复旦大学:《离散数学 Discrete Mathematics》英文讲稿_14 Soundness Completeness Compactness

Discrete mathematics Yi Li Software school Fudan universit June12,2012
Discrete Mathematics Yi Li Software School Fudan University June 12, 2012 Yi Li (Fudan University) Discrete Mathematics June 12, 2012 1 / 1

Review Tableau proof o Complete systematic tableaux
Review Tableau Proof Complete Systematic Tableaux Yi Li (Fudan University) Discrete Mathematics June 12, 2012 2 / 1

utline Soundness o Completeness o Compactness
Outline Soundness Completeness Compactness Yi Li (Fudan University) Discrete Mathematics June 12, 2012 3 / 1

Tableau proof amp dle Consider a sentence GyR(, y)v P(, y))V(VXR(x,x). There is a model A
Tableau Proof Example Consider a sentence (∃y)(¬R(y, y) ∨ P(y, y)) ∨ (∀x)R(x, x). There is a model A. Yi Li (Fudan University) Discrete Mathematics June 12, 2012 4 / 1

Soundness emma If T= UTn is a tableau from a set of sentences s with root Fa, then any L-structure a that is a model of SUt-naf can be extended to one agreeing with every entry on some path P through T. Recall that A agrees with Ta(Fa) if a is true (false) in A) Theorem(Soundness) If there is a tableau proof r of a from S, then Sha
Soundness Lemma If τ = ∪τn is a tableau from a set of sentences S with root Fα, then any L-structure A that is a model of S ∪ {¬α} can be extended to one agreeing with every entry on some path P through τ .( Recall that A agrees with Tα(Fα) if α is true(false) in A.) Theorem (Soundness) If there is a tableau proof τ of α from S, then S |= α. Yi Li (Fudan University) Discrete Mathematics June 12, 2012 5 / 1

Completeness 「The eorem Suppose P is a noncontradictory path through a complete systematic tableau T from S with root Fa There is then a structure A in which a is false and every sentence in s is true
Completeness Theorem Suppose P is a noncontradictory path through a complete systematic tableau τ from S with root Fα. There is then a structure A in which α is false and every sentence in S is true. Yi Li (Fudan University) Discrete Mathematics June 12, 2012 6 / 1

Completeness( Cont emma Let the notation be as above o If FB occurs on P, then B is false in A o If TB occurs on P, then B is true in A
Completeness(Cont.) Lemma Let the notation be as above 1 If Fβ occurs on P, then β is false in A. 2 If Tβ occurs on P, then β is true in A. Yi Li (Fudan University) Discrete Mathematics June 12, 2012 7 / 1

Property of CST Proposition If every path of a complete systematic tableau is contradictory, then it is a finite tableau
Property of CST Proposition If every path of a complete systematic tableau is contradictory, then it is a finite tableau. Yi Li (Fudan University) Discrete Mathematics June 12, 2012 8 / 1

Property of CST orollar or every sentence a and set of sentences S of L, either o the CsT from s with root Fa is a tableau proof of a from o there is a noncontradictory branch through the complete systematic tableau that yields a structure in that a is false and every element of s is true
Property of CST Corollary For every sentence α and set of sentences S of L, either 1 the CST from S with root Fα is a tableau proof of α from S. or 2 there is a noncontradictory branch through the complete systematic tableau that yields a structure in that α is false and every element of S is true. Yi Li (Fudan University) Discrete Mathematics June 12, 2012 9 / 1

Completeness and Soundness Theorem(Completeness and Soundness) o a is a tableau provable from S+ a is a logical consequence of s o If we take a to be any contradiction such as B AnB in 1, we see that s is inconsistent if and only if s is unsatisfiable
Completeness and Soundness Theorem (Completeness and Soundness) 1 α is a tableau provable from S ⇔ α is a logical consequence of S. 2 If we take α to be any contradiction such as β ∧ ¬β in 1, we see that S is inconsistent if and only if S is unsatisfiable. Yi Li (Fudan University) Discrete Mathematics June 12, 2012 10 / 1
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_10 Application of compactness theorem Limits of propositional logic Predicates and quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_07 Tableau proof system.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_03.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_overview.pdf
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_29/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_28/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_27/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_26/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_25/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_24/29.ppt
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_01 Lattice(I).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_02 Lattice(II).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_03 Introduction to Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_07 Tableau Proof System.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_09 Deduction from Premises,Compactness, and Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_10 Predicates and Quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_11 Term, Formula and Formation Tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_12 Semantics of Predicated Language.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_13 Tableau Proof of Predicate Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_14 Soundness and Completeness of Predicate Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_15 Application and Limitations.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)绪论、第一章 集合的基本概念.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第二章 关系(主讲:吴永辉).pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第三章 函数.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第三章 函数.pdf