复旦大学:《离散数学 Discrete Mathematics》英文讲稿_11 Terms Formuals Formation tree

Discrete mathematics Yi li Software school Fudan University May22,2012
Discrete Mathematics Yi Li Software School Fudan University May 22, 2012 Yi Li (Fudan University) Discrete Mathematics May 22, 2012 1 / 1

Review o Limits of pl o Predicates and quantifiers
Review Limits of PL Predicates and quantifiers Yi Li (Fudan University) Discrete Mathematics May 22, 2012 2 / 1

utline Terms o Formuals o Formation tree
Outline Terms Formuals Formation tree Yi Li (Fudan University) Discrete Mathematics May 22, 2012 3 / 1

Predicates and Quantifiers predicates variables constants o functions universal quantifier: V, "for all o existential quantifier: 3, there exists
Predicates and Quantifiers predicates variables constants functions universal quantifier: ∀, ”for all”. existential quantifier: ∃, there exists Yi Li (Fudan University) Discrete Mathematics May 22, 2012 4 / 1

Formula Definition(Subformula) A subformula of a formula p is a consecutive sequence of symbols from y which is itself a formula Xample Given an formula ((x)(p(x)vo(x, y))->(z)o(z))) o Is((vxp(x)) a subformula? o Is o(x) a subformula? (x)(y(x)Vo(x,y),(z)u(z),y(x),o(x,y) and o(z) all are subformulas
Formula Definition (Subformula) A subformula of a formula ϕ is a consecutive sequence of symbols from ϕ which is itself a formula. Example Given an formula (((∀x)(ϕ(x) ∨ φ(x, y))) → ((∃z)σ(z))). 1 Is ((∀x)ϕ(x)) a subformula? 2 Is σ(x) a subformula? 3 ((∀x)(ϕ(x) ∨ φ(x, y))), ((∃z)σ(z)),ϕ(x), φ(x, y), and σ(z) all are subformulas. Yi Li (Fudan University) Discrete Mathematics May 22, 2012 5 / 1

Occurrence amp dle Consider the following examples o(x)y(x,y)∧(x)(x) (x)42(x,y)Av(x) Definition(Occurrence) An occurrence of a variable v in a formula p is bound if there is a subformula yb of yp containing that occurrence of v such that y/ begins with((v)or(v).An occurrence of v in p is free if it is not bound
Occurrence Example Consider the following examples: 1 (((∀x)ϕ(x, y)) ∧ ((∃x)ψ(x))) 2 (((∀x)ϕ(x, y)) ∧ ψ(x)) Definition (Occurrence) An occurrence of a variable v in a formula ϕ is bound if there is a subformula ψ of ϕ containing that occurrence of v such that ψ begins with ((∀v) or ((∃v). An occurrence of v in ϕ is free if it is not bound. Yi Li (Fudan University) Discrete Mathematics May 22, 2012 6 / 1

Free Occurrence amp dle Consider the following examples Q(三y)(×)(x,y)∧v(x) Definition A variable v is said to occur free in p if it has at least one free occurrence there
Free Occurrence Example Consider the following examples: 1 ((∃y)((∀x)ϕ(x, y)) ∧ ψ(x)) Definition A variable v is said to occur free in ϕ if it has at least one free occurrence there. Yi Li (Fudan University) Discrete Mathematics May 22, 2012 7 / 1

Sentence amp dle Consider the following examples Q(三y)(x)y(x,y)∧(vz)u(z)) O((VX(((yR(x,y))V(yT(x, y)) o (co, C1 Definition A sentence of predicate logic is a formula with no free occurrences of any variable
Sentence Example Consider the following examples: 1 ((∃y)((∀x)ϕ(x, y)) ∧ (∀z)ψ(z)) 2 ((∀x)(((∀y)R(x, y)) ∨ ((∃y)T(x, y))). 3 ϕ(c0, c1) Definition A sentence of predicate logic is a formula with no free occurrences of any variable. Yi Li (Fudan University) Discrete Mathematics May 22, 2012 8 / 1

Open Formula Definition An open formula is a formula without quantifiers E〉 xample O All atomic formulas: o(x), R(x,y) O(R(, y)Vo(x)) R(Co, C1)
Open Formula Definition An open formula is a formula without quantifiers . Example 1 All atomic formulas: φ(x), R(x, y) .... 2 (R(x, y) ∨ φ(x)). 3 R(c0, c1). Yi Li (Fudan University) Discrete Mathematics May 22, 2012 9 / 1

Substitution Definition(Substitution(Instantiation). If p is a formula and v a variable, we write pv)to denote the fact that v occurs free in p o If t is a term, then o(t), or if we wish to be more explicit, (v/t), is the result of substituting(or instantiating) t for all free occurrences of v in p We call p(t) an instance of p o If p(t)contains no free variables, we call it a ground instance ofφp
Substitution Definition (Substitution(Instantiation)) If ϕ is a formula and v a variable, we write ϕ(v) to denote the fact that v occurs free in ϕ. 1 If t is a term, then ϕ(t), or if we wish to be more explicit, ϕ(v/t), is the result of substituting ( or instantiating) t for all free occurrences of v in ϕ. We call ϕ(t) an instance of ϕ. 2 If ϕ(t) contains no free variables, we call it a ground instance of ϕ. Yi Li (Fudan University) Discrete Mathematics May 22, 2012 10 / 1
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_10 Application of compactness theorem Limits of propositional logic Predicates and quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_07 Tableau proof system.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_03.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_overview.pdf
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_29/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_28/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_27/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_26/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_25/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_24/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_23/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_22/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_21/29.ppt
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_01 Lattice(I).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_02 Lattice(II).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_03 Introduction to Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_07 Tableau Proof System.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_09 Deduction from Premises,Compactness, and Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_10 Predicates and Quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_11 Term, Formula and Formation Tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_12 Semantics of Predicated Language.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_13 Tableau Proof of Predicate Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_14 Soundness and Completeness of Predicate Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_15 Application and Limitations.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)绪论、第一章 集合的基本概念.pdf