复旦大学:《离散数学 Discrete Mathematics》英文讲稿_04 Propositions Truth table Adequacy

Discrete mathematics Yi Li Software school Fudan universit March 20. 2012
Discrete Mathematics Yi Li Software School Fudan University March 20, 2012 Yi Li (Fudan University) Discrete Mathematics March 20, 2012 1 / 24

Review Introduction Tr o Konig lemma
Review Introduction Tree K¨onig lemma Yi Li (Fudan University) Discrete Mathematics March 20, 2012 2 / 24

utline Propositions Truth table ● Adequacy
Outline Propositions Truth table Adequacy Yi Li (Fudan University) Discrete Mathematics March 20, 2012 3 / 24

Connectives amp dle Consider the following statements o am a student @ I am not a student o I am a student and i study computer science o I am a boy or I am a girl o If I am a student I have a class in a week o I am student if and only if I am a member of some unIversity
Connectives Example Consider the following statements: 1 I am a student. 2 I am not a student. 3 I am a student and I study computer science. 4 I am a boy or I am a girl. 5 If I am a student, I have a class in a week. 6 I am student if and only if I am a member of some university. Yi Li (Fudan University) Discrete Mathematics March 20, 2012 4 / 24

Connectives We don t care about the following Are you a student? o Sit down please o What are you doing
Connectives We don’t care about the following: Are you a student? Sit down please. What are you doing? Yi Li (Fudan University) Discrete Mathematics March 20, 2012 5 / 24

Connectives a summary of connectives Symbol Verbose name Remark V disjunction ∧ conjunction and negation not conditional if. then biconditional if and only if
Connectives A summary of connectives: Symbol Verbose name Remark ∨ disjunction or ∧ conjunction and ¬ negation not → conditional if ..., then ... ↔ biconditional if and only if Yi Li (Fudan University) Discrete Mathematics March 20, 2012 6 / 24

anguage o Symbols of propositional logic Connectives:V,∧,,→,分 e Parentheses O Propositional Letters: A, A1, A2, ...,B, B1, B2 o A propositional letter is the most elementary object
Language Symbols of propositional logic: 1 Connectives: ∨, ∧, ¬,→,↔ 2 Parentheses: ), ( 3 Propositional Letters: A, A1, A2, · · · , B, B1, B2, · · · . A propositional letter is the most elementary object. Yi Li (Fudan University) Discrete Mathematics March 20, 2012 7 / 24

Propositions Definition(Proposition) o Propositional letters are propositions o if a and B are propositions, then (aV3),(a^B),(-a),(a→B)and(a分)are propositions o A string of symbols is a proposition if and only if it can be obtained by starting with propositional letters(1)and repeatedly applying(2)
Propositions Definition (Proposition) 1 Propositional letters are propositions. 2 if α and β are propositions, then (α ∨ β),(α ∧ β),(¬α),(α → β) and (α ↔ β) are propositions. 3 A string of symbols is a proposition if and only if it can be obtained by starting with propositional letters (1) and repeatedly applying (2). Yi Li (Fudan University) Discrete Mathematics March 20, 2012 8 / 24

Propositions Definition of Proposition is well-defined or well-formed Or The proposition constructed according to the definition Example Check the following strings (AV∨B),(A∧B)→C eAV-,(A∧B
Propositions Definition The proposition constructed according to the definition of Proposition is well-defined or well-formed. Example Check the following strings: 1 (A ∨ B),((A ∧ B) → C) . 2 A ∨ ¬,(A ∧ B Yi Li (Fudan University) Discrete Mathematics March 20, 2012 9 / 24

Truth tables bAve aBa∧B
Truth Tables α β α ∨ β T T T T F T F T T F F F α β α ∧ β T T T T F F F T F F F F α β α → β T T T T F F F T T F F T Yi Li (Fudan University) Discrete Mathematics March 20, 2012 10 / 24
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_03.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_overview.pdf
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_29/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_28/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_27/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_26/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_25/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_24/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_23/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_22/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_21/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_20/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_19/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_18/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_17/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_16/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_15/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_14/29.ppt
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_07 Tableau proof system.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_10 Application of compactness theorem Limits of propositional logic Predicates and quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_01 Lattice(I).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_02 Lattice(II).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_03 Introduction to Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_07 Tableau Proof System.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_09 Deduction from Premises,Compactness, and Applications.pdf