《概率论与数理统计》课程电子教案(PPT课件讲稿)第一章 习题集

概率统计第一章习题课 cnsphote
概率统计第一章习题课

1-8 由P(AB)=0为AB=① →ABC=d→P(ABC)=0 故P(A∪B∪C)=PA)+P(B)+P(C)-P(AB) P(AC)-P(BC)+ P(ABC) 0---0+0= 求解过程是否正确?—否错在何处?
1-8 ( ) 0 ( ) 0 = = = = ABC P ABC 由P AB AB 8 5 0 0 8 1 0 4 1 4 1 4 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = + + − − − + = − − + = + + − P AC P BC P ABC 故 P A B C P A P B P C P AB 求解过程是否正确?— — 否 错在何处?

另证 P(ABC)=P(C-AB)=P(C-CAB) P(C)-P(C AB) P(C)-P(C-AB) 2P(C)-[P(C)-P(AB) =P(AB)=0 因为题中并未设ABcC
= P(C) − P(C AB) = P(C) −[ P(C) − P(AB)] = P(AB) = 0. = P(C) − P(C − AB) P(ABC) = P(C − AB) = P(C −C AB) 另证 ? 因为题中并未设 AB C

正确推导由 ABC CAB→ 0≤P(ABC)≤P(AB)=0→P(ABC)=0 1-12解—n=2000算有利场合数 有位8—C"C2CCC=5832 有两位8—C4C2CC=972 k=6878 有三位8-CC2C9=72 有四位8 P=k/n=6878/20000=0.3439
1-12 n = 20000 , 计算有利场合数 正确推导 0 P(ABC) P(AB) = 0 P(ABC) = 0 有一位 8 — 5832 1 9 1 9 1 9 1 2 1 C4 C C C C = 有两位 8 — 972 1 9 1 9 1 2 2 C4 C C C = 有三位 8 — 72 1 9 1 2 3 C4 C C = 由ABC AB 有四位 8 — 2 1 C2 = k = 6878 解一 P = k / n = 6878/ 20000 = 0.3439

解二设A为事件“牌号有84为事件 第位上有8“(从个位数起),i 如4=∪A,P(A)=01,i=1~4 P(A)=P(1)=1-P∩A) =1-[PA)=1-094=03439 解三P=1-P(无8)=1-94/104=0.3439
( ) ( ) 4 1 = = i P A P Ai 1 ( ) 4 1 = = − i P Ai 4 1 [ ( )] = − P Ai 1 0.9 0.3439. 4 = − = 解二 设A为事件“ 牌号有8 ”, “ 第i 位上有8 ”(从个位数起), i= 1~ 4 Ai为事件 则 , 4 1 = = i A Ai P(A ) = 0.1, i =1~ 4 . i 解三 1 ( 8) 1 9 /10 0.3439. 4 4 P = − P 无 = − =

1-19n=C ①k=CC;C P n-/33 ②k=Ccc2×P=213 ③k= ckclCICICIXP=6 32 n-/33 ④k=C6C10P=k/n=18/33 ⑤设A为事件“恰有1双配对”,则 A为事件“无1双配 对
1- 19 4 C12 n = 1 2 1 5 1 8 1 k = C6 C C C 33 16 = = n P k ? 1 2 1 4 1 2 1 5 1 ③ k = C6 C C C C 33 32 = = n P k 1 4 1 5 1 k = C6 C C 33 8 = = n P k ④ 2 10 1 k = C6 C P = k / n =18/33 ⑤ 设A为事件“ 恰有1双配对 ”,则 为事件“ 无1双配 对 ”. ① ② A

下面有利事件数k值均为240,但形 式各不相同,如何解释?解释不通不算对. k=CCCa k=C6C6C k=ccc k=clcl CI 8 10 k=PPPP2 解一P=1-P(无配对)-P(全配对) 24C2 6 16 12 C433
1 4 1 4 2 k = C6 C C 1 8 1 5 1 k = C6 C C 1 2 3 6 1 k = C6 C C 1 2 2 5 2 2 1 k = P6 P P P 1 10 1 12 1 k = C2 C C 下面有利事件数 k 值均为 240, 但形 式各不相同, 如何解释?解释不通不算对. 解一 33 2 16 1 4 12 2 6 4 12 4 4 6 = − − = C C C C P =1− P(无配对) − P(全配对)

法二k=CC2C2CC2 不配对配对 n=c 12 法三k=C6·CC2C2 P 配对不配对 /n 16 法四k=C6(C10-C) 33 法五k=Cl. clock 分左右不配对
4 C12 n = 法五 1 2 1 2 2 5 1 k = C6 C C C 法二 ( ) 1 5 2 10 1 k = C6 C −C n P k = 配对 不配对 法三 2 2 1 4 1 2 1 2 2 k = C6 C C C C 不配对 配对 33 16 法四 = 1 4 1 5 1 2 1 k = C6 C C C 分左右不配对

1-32 解一设五个时段先后到家分别为事件 A1i=1,2,3,4,5:乘地铁与汽车回家为事 件B、C.则B∪C=9 P(AB)=0.10P(A2B)=0.25P(42B)=045 P(A5B)=0.05
1- 32 解一 设五个时段先后到家分别为事件 Ai i =1,2,3,4,5 ;乘地铁与汽车回家为事 ( ) 0.10 1 P A B = ( ) 0.25 2 P A B = ( ) 0.45 3 P A B = ( ) 0.05 5 P A B = 件B、C . 则 B C =

P(AC)=0.0P(2C)=0.5P(A3C)=020 P(A4C)=010P(A4C)=005 P(BA)+P(CA) P(A3B) P(AC) P(43)P(4) P(A3)=P(AB)+P(A4C)=0.65 P(B4) P(A3B)0.459 P(43)0.6513
( ) P B A3 + ( ) = P C A3 ( ) ( ) 3 3 P A P A B 1 ( ) ( ) 3 3 + = P A P A C ( ) ( ) P A3 = P A3 B ( ) 0.65 +P A3 C = ( ) P B A3 . 13 9 0.65 0.45 ( ) ( ) 3 3 = = = P A P A B ( ) 0.30 1 P AC = ( ) 0.35 2 P A C = ( ) 0.20 3 P A C = ( ) 0.10 4 P A C = ( ) 0.05 5 P A C =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第八章 假设检验(8.2)正态总体的参数检验.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第八章 假设检验(8.1)假设检验的基本概念.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第七章 参数估计(7.3)区间估计.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第七章 参数估计(7.2)点估计的评价标准.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第七章 参数估计(7.1)参数估计.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第六章 数理统计的基本概念(6.2)统计中常用分布.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第六章 数理统计的基本概念(6.1)数理统计的基本概念.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第五章 大数定律与中心极限定理(5.2)中心极限定理.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第五章 大数定律与中心极限定理(5.1)大数定律.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第四章 随机变量的数字特征(4.4)协方差和相关系数.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第四章 随机变量的数字特征(4.2)方差.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第三章 多维随机变量及其分布(3.4)二维r.v.函数的分布.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第三章 多维随机变量及其分布(3.3)随机变量的独立性.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第三章 多维随机变量及其分布(3.2)二维r.v.的条件分布.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第三章 多维随机变量及其分布(3.1)多维分布.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第二章 随机变量及其分布(2.4)r.v.函数的分布.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第二章 随机变量及其分布(2.3)连续型随机变量.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第二章 随机变量及其分布(2.2)离散型随机变量及其概率分布.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第二章 随机变量及其分布(2.1)随机变量及其分布.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第一章 随机事件及其概率(1.4)事件的独立性.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第二章 习题集.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第三章 习题集.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第四章 习题集.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第六章 习题集.pps
- 《概率论与数理统计》课程电子教案(PPT课件讲稿)第七章 习题集.pps
- 《线性代数》第一章 行列式.doc
- 《线性代数》第三章 n维向量.doc
- 《线性代数》第二章 矩阵.doc
- 《线性代数》第五章 特征值问题及二次型.doc
- 《线性代数》第四章 线性方程组.doc
- 《线性代数》 课程简介.doc
- 北京大学:《高等代数》课程教学资源(讲义)第一章 代数学的经典课题(1.1)若干准备知识.doc
- 北京大学:《高等代数》课程教学资源(讲义)第一章 代数学的经典课题(1.2)一元高次代数方程的基础知识.doc
- 北京大学:《高等代数》课程教学资源(讲义)第一章 代数学的经典课题(1.3)线性方程组.doc
- 北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵 2.1 m 维向量空间(2.1.1-2.1.3).doc
- 北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵 2.1 m 维向量空间 2.1.4 向量组的线性等价和集合上的等价关系 2.1.5 向量组的极大线性无关部分组和向量组的秩.doc
- 北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.2)矩阵的秩.doc
- 北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.3)线性方程组的理论课题.doc
- 北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.4)矩阵的运算.doc
- 北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.5)n阶方阵.doc