湖南商学院:《概率论》课程教学资源(PPT课件)第三章 随机向量及分布(3.4)边缘分布

第三章第四节 边缘分布
第三章第四节 边 缘 分 布

()边缘分布函数 维随机向量(X,Y)作为一个整体,具有分 布函数F(x,p) 其分量X和Y也都是随机变量,也有自己的 分布函数,将其分别记为Fx(x),Fy(y) 依次称为X和Y的边缘分布函数 而把F(xy)称为X和Y的联合分布函数
(一) 边缘分布函数 二维随机向量(X,Y)作为一个整体,具有分 布函数F(x,y). 其分量X和Y也都是随机变量,也有自己的 分布函数,将其分别记为FX(x),FY(y). 依次称为X和Y的 边缘分布函数. 而把F(x,y)称为X和Y的 联合分布函数

注意 X和Y的边缘分布函数,本质上就是一维随 机变量X和Y的分布函数.之所以称其为边缘分 布是相对于(X,Y)的联合分布而言的 同样地,联合分布函数F(xy)就是二维随 机向量(X,Y)的分布函数,之所以称其为联合分 布是相对于其分量X或Y的分布而言的 求法 Fx(x)=P(X≤x}=P{X≤x,Y<∞}=F(x,∞) F(y)=P{Y≤y=P{X<∞,Y≤y}=F(∞,y)
FX(x)=P{X≤x}=P{X≤x,Y<∞}=F(x,∞) FY(y)=P{Y≤y}=P{X<∞,Y≤y}=F(∞,y) X和Y的边缘分布函数,本质上就是一维随 机变量X和Y的分布函数.之所以称其为边缘分 布是相对于(X,Y)的联合分布而言的. 同样地,联合分布函数F(x,y)就是二维随 机向量(X,Y)的分布函数,之所以称其为联合分 布是相对于其分量X或Y的分布而言的. 注意 求法

(二)二维离散型随机向量的边缘分布 般,对离散型rv(X,F) X和Y的联合概率函数为 P(XXi,Y=y=Pi> i,j=1, 2, 则(X,Y)关于X的边缘概率函数为 P(Xx=x)=P.=∑p,i=12, (XY)关于Y的边缘概率函数为 P(Y=y)=p,=∑P2,j=12
一般,对离散型r.v ( X,Y ), 则(X,Y)关于X的边缘概率函数为 P(X=x ) =p • = p , i = 1,2, j i i i j P(Y =y ) =p• = p , j =1,2, i i j i j (X,Y)关于Y 的边缘概率函数为 X和Y 的联合概率函数为 P(X=xi ,Y = y j )=pi j, i, j =1,2, (二) 二维离散型随机向量的边缘分布

例1求:例3.2.1(P62)中(x,Y)的分量X和Y的 边缘分布 解 0 7/15 7/30 0 7/30 1/15 P=P{X=x}=∑P 77 7 153010 713 P2=P{X=x2}=∠P2-301510
解: 例 1 Y X 0 1 0 7/15 7/30 1 7/30 1/15 求:例3.2.1(P62)中(X,Y)的分量X和Y的 边缘分布. 10 3 15 1 30 7 { } 10 7 30 7 15 7 { } 2 1 2 2 2 2 1 1 1 1 = = = = + = = = = = + = = = j j j j p P X x p p P X x p

77 7 P1=P(Y=13=>Pl 153010 p2=PiY 3 P 301510 把这些数据补充到前面表上 0 p 7/15 7/30 7/10 0 7/30 1/15 3/10 7/10 3/10 p
10 3 15 1 30 7 { } 10 7 30 7 15 7 { } 2 1 2 2 2 2 1 1 1 1 = = = = + = = = = = + = = = i i i i p P Y y p p P Y y p Y X 0 1 pi. 0 7/15 7/30 7/10 1 7/30 1/15 3/10 p.j 7/10 3/10 1 把这些数据补充到前面表上:

例2(旧书P63,新书P60) 求:例3.2.2中(X,Y)的分量X和Y的边缘分布 解:P(X=0}=PX=0,y=0}+PX=0,y=1 =0.00013+0.19987=0.20000 P{X=1}=P(X=1,Y=0}+P{X=1,Y=1} =0.00004+0.79996=0.80000 PY=0}=P{X=0,Y=0}+P{X=1,Y=0} =0.00013+0.00004=0.00017 P{Y=1}=P{X=0,Y=1}+P{X=1,Y=1 =0.19987+0.79996=0.99983 转下页
解: 例2 (旧书P63, 新书P60) 转下页 求:例3.2.2中(X,Y)的分量X和Y的边缘分布. P{X=0}= P{X=0,Y=0}+P{X=0,Y=1} = 0.00013+0.19987=0.20000 P{X=1}= P{X=1,Y=0}+P{X=1,Y=1} = 0.00004+0.79996=0.80000 P{Y=0}= P{X=0,Y=0}+P{X=1,Y=0} = 0.00013+0.00004=0.00017 P{Y=1}= P{X=0,Y=1}+P{X=1,Y=1} = 0.19987+0.79996=0.99983

把这些数据补充到例3.2.2的计算结果上 是否患肺癌Y患 未患X的边缘分布 是否吸烟X Y=0 Y=1 吸烟{X=0} 0000130.19987 0.20000 不吸烟{X=} 0000407996 0.80000 Y的边缘分布0.000710.993
把这些数据补充到例3.2.2的计算结果上: 是否患肺癌 Y 是否吸烟 X 患 {Y=0} 未患 {Y=1} X 的边缘分布 吸 烟 {X=0} 0.00013 0.19987 0.20000 不吸烟{X=1} 0.00004 0.79996 0.80000 Y 的边缘分布 0.00017 0.99983 1

(三)、对连续型随机向量(X,Y) X和Y的联合概率密度为f(x,y) 则(X,Y)关于X的边缘概率函数为 fx(x)= f(x, y)dy (X,Y)关于Y的边缘概率函数为 fr(y=/(x,y)dx
(三)、 对连续型 随机向量 ( X,Y ) X和Y的联合概率密度为 则( X,Y )关于X的边缘概率函数为 ( X,Y )关于Y的边缘概率函数为 f (x, y) − f x = f x y dy X ( ) ( , ) − f ( y ) = f ( x, y )dx Y

例3若(x,Y)服从矩形区域a≤x≤b.c≤y≤d 上均匀分布,两个边缘概率密度分别为 x∈[a2b f(x)= b-a f( C∈lc,d 0x≠[a,b 0y≠[c,d 注上题中X和Y都是服从均匀分布的随机变 量.但对于其它(不是矩形)区域上的均匀分布,不 定有上述结论
例3 若(X,Y)服从矩形区域a≤x≤b.c≤y≤d 上均匀分布,两个边缘概率密度分别为: − = 0 [ , ] [ , ] 1 ( ) x a b x a b b a f x X − = 0 [ , ] [ , ] 1 ( ) y c d y c d d c f y Y 注 上题中X和Y都是服从均匀分布的随机变 量.但对于其它(不是矩形)区域上的均匀分布,不 一定有上述结论
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 湖南商学院:《概率论》课程教学资源(PPT课件)第三章 随机向量及分布(3.3)二维连续型随机向量.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第三章 随机向量及分布(3.2)二维离散型随机向量.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第三章 随机向量及分布(3.1)二维随机向量及其分布函数.ppt
- 《实变函数》课程教学资源(教案讲义)电子教案目录.pdf
- 《实变函数》课程教学资源(PPT课件讲稿)第五章 积分理论(5.4)单调函数的结构.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第四章 可测函数(4.4)可测函数的收敛性(续).ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第四章 可测函数(4.3)可测函数结构 Lusin定理.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第四章 可测函数(4.1)可测函数的定义及其简单性质.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第三章 测度理论(3.4)习题讲解.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第三章 测度理论(3.3)开集的可测性.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第三章 测度理论(3.2)可测集合.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第三章 测度理论(3.1)外测度.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第二章 n维空间中的点集(2.4)习题讲解.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第二章 n维空间中的点集(2.3)点集间的距离.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第二章 n维空间中的点集(2.2)开集与闭集.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第二章 n维空间中的点集(2.1)n维欧氏空间.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第一章 集合及其基数(1.5)习题讲解.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第一章 集合及其基数(1.4)不可数无穷集.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第一章 集合及其基数(1.3)可数集合.ppt
- 《实变函数》课程教学资源(PPT课件讲稿)第一章 集合及其基数(1.1)集合及其运算.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第三章 随机向量及分布(3.5)条件分布.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第三章 随机向量及分布(3.6)随机变量的独立性.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第三章 随机向量及分布(3.7)随机向量函数的分布.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.4)多项式的最大公因式.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.5)多项式的分解.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.6)重因式.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.7)多项式函数与多项式的根.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.8)复数域和实数域上的多项式.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.9)有理系数多项式.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.10)多元多项式.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.11)对称多项式.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.1)数环和数域.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.2)一元多项式的定义和运算.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.3)整除性理论.ppt
- 《拓扑学基础》课程教材PDF电子书(共四章,含附录).pdf
- 北京大学:《高等代数》课程教学资源(讲义)第一章 代数学的经典课题 §1 若干准备知识.doc
- 北京大学:《高等代数》课程教学资源(讲义)第一章 代数学的经典课题 §2 一元高次代数方程的基础知识.doc
- 北京大学:《高等代数》课程教学资源(讲义)第一章 代数学的经典课题 §3 线性方程组.doc
- 北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.1)m维向量空间.doc
- 北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.1.4)向量组的线性等价和集合上的等价关系.doc