上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 19 Chemical Thermodynamics(1/3)

Chap.5 The First Law of Thermodynamics热力学 The internal energy (E)of an system:the sum of the all kinetic and potential energies of all its components. AEsystem十△Fsounding =0 Closed Heat,q surroundings System Work,w △E =-△E system surrounding =9+w Process Sign Work done by the system on the surroundings Work done on the system by the surroundings Heat absorbed by the system from the surroundings(endothermic process) Heat absorbed by the surroundings from the system(exothermic process)
surroundings Closed System Heat, q Work, w Chap.5 The First Law of Thermodynamics ∆ ∆ = E + E 0 system surrounding The internal energy (E) of an system: the sum of the all kinetic and potential energies of all its components. 热力学 E = - E system surrounding ∆ ∆ = +q w

Transferring Energy:Work (w)&heat In chemistry,two types of work are interesting:electrochemical work P-Vwork: Work done by the system,increases its volume - Work done on the system,decreases its volume No volume change,no expansion work. When a gas system expands against a constant external pressure Pe W=FXd=P×AXd=P.X△V W=-Px·△V g W0: AV
– Work done by the system, increases its volume In chemistry, two types of work are interesting: electrochemical work & P-V work: Transferring Energy: Work (w) & heat When a gas system expands against a constant external pressure P – Work done on the system, decreases its volume – No volume change, no expansion work. W F d P A d P V = × = × × = × ∆ ex ex When a gas system expands against a constant external pressure Pex - W P V = ⋅∆ ex W 0

Transferring Energy:Work (w)&Heat (q) Exercise 1:What is the change in energy when a system does 135 J work and absorbs 45.0 cal of heat from surrounding? w=-135J q=+45.0cal×4.184J/cal=+188J △E=w+q=-135+188=+53J 1 J=1 kg.m2/s2 Traditional: 1 cal 4.184 J calorie (cal) 1 Cal (big Cal)=1000 cal=1 kcal Nutrition/Food=Calorie(big Cal)
Exercise 1: What is the change in energy when a system does 135 J work and absorbs 45.0 cal of heat from surrounding? w = 1- 35 J ∆E = w + q = 135 188 = - + +53 J q = + 45.0 4.1 cal J/ca × 84 = l J +188 E = system ∆ +q w Transferring Energy: Work (w) & Heat (q) Traditional: 1 cal = 4.184 J ‘calorie (cal) 1 Cal (big Cal) = 1000 cal = 1 kcal Nutrition/Food = Calorie (big Cal) ∆E = w + q = 135 188 = - + +53 J 2 2 1 =1 J kg m⋅ / s

Enthalpy焓 H=enthalpy or “Total Heat Content"” Enthalpy (H):used to quantify the heat flow into or out of a system in a process that occurs at constant pressure (qp). H:a state function.No need to calculate H (absolute value)itself, Only difference in H (AH)is necessary. exothermic -H reactants =9p △H0 reactants endothermic Activated Activated complex complex K3ou [enualod E Hreactants K3Jou enusiod Hproducts Hproduets Hreactants Reaction progress Reaction progress
∆ = = H q H - H products rea t c ants p Enthalpy H: a state function. No need to calculate H (absolute value) itself, Only difference in H (∆H) is necessary. Enthalpy (H) : used to quantify the heat flow into or out of a system in a process that occurs at constant pressure (qp). H = enthalpy or “Total Heat Content” exothermic 焓 H H 0 products reactants ∆ > H endothermic

State Function 状态函数 State function:A property of a system,which is independent of the “path”,however,it is dependent only of the“current state” 目前状态 AE-Erinal state-Einitial stateH-H final state-Hinitial state △P=Pfinal state Pinitial state AV-Vrinal state -Vinitial state △T=Tfinal state~ Tintia Potential energy of hiker 1 and hiker 2 is the same even though they took different paths
State function: A property of a system, which is independent of the “path” , however, it is dependent only of the “current state” ∆E= E - E final state initial state ∆P = P - P final state initial state ∆V = V - V final state initial state ∆T = T - T State Function 状态函数 目前状态 ∆H= H - H final state initial state Potential energy of hiker 1 and hiker 2 is the same even though they took different paths. final state initial state ∆T = T - T

Thermochemical Equations 热化学方程式 1.Enthalpy:an extensive property: 广度性质 Given:H2O(s)→H20(0 △H=6.01kJ stoichiometric coefficients 计量系数 2H20(s)→2H20(0△H=? △H=2×6.01 CH4(g)+2O2(g)=C02(g+2H2O(g)△H=-802k 2CH4(g)+402(g)=2C02(g)+4H2O(g)△H=-1604kJ
H2O (s) H2O (l) ∆H = 6.01 kJ Thermochemical Equations 2H2O (s) 2H2O (l) 1. Enthalpy: an extensive property: ∆H = ? Given: stoichiometric coefficients 热化学方程式 计量系数 广度性质 2H2O (s) 2H2O (l) ∆H = ? ∆H = 2 ×6.01 CH (g)+2O (g) = CO (g)+2H O(g) H = -802 kJ 4 2 2 2 ∆ CH (g)+ O (g) = CO (g) 4 2 2 2 2 4 2 + H O(g) H 4 16 ∆ = - J 04 k

Thermochemical Equations 热化学方程式 2.Change in enthalpy (AH)depends on physical state: State function H2OI)→HO(g) △H=44.0kJ HO(g)→H2O() △H=? △H=-44.0kJ 2H,O(g)→2H,O() △H=-2×44.0kJ Ifyou reverse a reaction,the sign of AH changes
2. Change in enthalpy ( 2. Change in enthalpy (∆H) depends on ) depends on physical state: Thermochemical Equations 热化学方程式 2 2 H O l H O g ( ) ( ) H=44.0 kJ → ∆ State function If you reverse a reaction, the sign of ∆H changes 2 2 H O g H O l ( ) ( ) H= → ∆ ? ∆H= 4- 4.0 kJ 2 2 2 2 - 2 H O g H O l ( ) ( ) H= → ∆ × 44.0 kJ

Exercise 2:Given the changes of enthalpy of reaction (1)&(2) Calculate how much heat is involyed in the 3rd reaction? (1)2H2(g)+O2(8)=2H0(g)△H=-483.9kJ/mo1 (2)2HO(g)→2H,O()△H=-88kJ1mol (3)2H2(g)+O2(g)→2HOI)△H=?kJ1mol (1) 2H2(g)+O2(g)=2HO(g) +(2) 2H,O(g)=2H,O() Hess's Law (3) 2H2(g)+O2(g)=2HO() △H3=△H1+△H2=-438.9kJ-88kJ=-572kJ AH of overall reaction is the sum of the AH for each individual step. △H=△H1+△H2+△H
2 2 (2) 2 ( ) 2 ( H O H O H kJ mo g l → ∆ = ) 88 / − l 2 2 2 (1) 2 ( ) ( ) = 2H O(g) H 483.9 / H O mol g + g ∆ = − kJ 2 2 2 (1) 2 ( ) ( ) = 2H O( ) H O g g + g = 2 2 2 (3) 2 ( ) ( ) 2 ( ) / H O H g + = g → O mo l ? ∆H kJ l Exercise 2: Given the changes of enthalpy of reaction (1) & (2). Calculate how much heat is involved in the 3rd reaction? 2 2 2 2 2 +(2) 2 ( ) 2 ( ) (3) 2 ( ) ( ) = 2 ( ) H O H O H O H O g l g g l = + 3 1 2 ∆H = ∆ + ∆ H H = − = − 438.9 88 572 kJ kJ − kJ ∆H of overall reaction is the sum of the ∆H for each individual step. ∆ ∆ ∆ ∆ H = H + H + H 1 2 3 Hess’s Law

Exercise 3:Given the changes of enthalpy of reaction (1)&(2). Calculate how much heat is involyed in the 3rd reaction? N2g+202g→2N02g H1=66.4kJ 2N0(g+02g)→2N028 H2=-114.2kJ N2(g+O2g→2N0(g H3=? N2(g)+22g)→2e2(g △H=66.4kJ +2O,(g)→2NO(g)+Dg) △H,=+114.2kJ N2(g)+O2(g)→2NO(g) △H,=(66.4+114.2)kJ Hss'sLaw:△H=△H1+△H2+△H
2 2 2 N (g) + 2O (g) 2NO (g) → → N2(g) + 2O 2(g) → 2NO 2(g) ∆H1 = 66.4 kJ 2 NO (g) + O 2(g) → 2NO 2(g) ∆H2 = - 114.2 kJ N2(g) + O 2(g) → 2NO(g) ∆H3 = ? 1 H = 66.4 kJ ∆ ∆ Exercise 3: Given the changes of enthalpy of reaction (1) & (2). Calculate how much heat is involved in the 3rd reaction? 2 2 + 2NO (g) 2 NO 2 2 N (g) + O (g) 2 (g) + O (g) N ) O(g → → ' 2 3 +114.2 kJ (66.4+114.2)kJ H = H = ∆ ∆ 1 2 3 Hess s Law ' : H = H + H + H ∆ ∆ ∆ ∆

Exercise 4:Given the changes of enthalpy of reaction (1),(2)&(3) Calculate how much heat is involved in the 4th reaction? N0g+O3g→NO2g+02g 4H1=-198.9kJ 203(8→3028g H2=-284.6kJ 028g→208g) H3=495.0kJ NOg+O(g→N02,g H=? NO(g)+(g)NO,(g)+e.(g) △H=-198.9kJ ,(g)→g) △H2=-(-284.6)/2kJ 0g)→6,(g) AH,=-(495.0)/2kJ N0(g)+O(g)→NO2(g)△H4=-198.9kJ-(-284.6)/2kJ-(495.0)/2kJ =-304.1kJ Hess'sLaw:△H=△H1+△H2+AH3
NO(g) + O (g) NO (g) + O (g) H = -198.9 kJ → ∆ NO(g) + O 3(g) → NO 2(g) + O2(g) ∆H1 = -198.9 kJ 198.9 kJ 2 O3(g) → 3 O 2(g) ∆H2 = -284.6 kJ 284.6 kJ O 2(g) → 2O(g) ∆H3 = 495.0 kJ NO(g) + O(g) → NO 2(g) ∆H4= ? Exercise 4: Given the changes of enthalpy of reaction (1), (2) & (3) Calculate how much heat is involved in the 4th reaction? 3 ' 3 2 2 1 2 ' 2 3 2 NO(g) + O (g) NO (g) + O (g) H = -198.9 kJ O (g) O (g) = (-284.6) kJ O(g) O (g) = (495.0) kJ 3 H - 2 2 1 H - 2 2 → ∆ → → ∆ ∆ NO(g) + O(g) NO (g) H = -198.9 kJ (-284. 2 4 6) kJ (495.0) kJ = - 2 - 2 -304.1kJ → ∆ 1 2 3 Hess s Law ' : H = H + H + H ∆ ∆ ∆ ∆
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 19 Chemical Thermodynamics(3/3).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 19 Chemical Thermodynamics(2/3).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)polymers and plastics.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 11 Intermolecular Forces.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Nanoscale materials in chemistry.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 9 Molecular Geometry and Bonding Theories(9.4-9.7).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 9 Molecular Geometry and Bonding Theories(9.1-9.3).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 8 Basic Concepts of Chemical Bonding.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 6 Electronic Structure of Atoms(6.4-6.9).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap.20 Voltaic Cells(Galvanic Cells).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 19 Chemical Thermodynamics.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Nano-scale materials in chemistry.pdf
- 《高分子化学》课程教学资源(参考材料)Lecture Notes in Chemistry Volume 82《Principles of Polymer Design and Synthesis》.pdf
- 《高分子化学》课程教学资源(参考书籍)Paul C. Hiemenz&Timothy P. Lodge《Polymer Chemistry》第二版(Second Edition).pdf
- 《高分子化学》课程教学资源(参考书籍)CHRISTOPHER S.BRAZEL、STEPHEN L.ROSEN《FUNDAMENTAL PRINCIPLES OF POLYMERIC MATERIALS》(Third Edition).pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)自由基聚合(连锁聚合).pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)缩聚和逐步聚合.pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)缩聚和逐步聚合的实施方法.pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)体型缩聚与缩聚共聚.pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)绪论(郭晓霞).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap.20 Voltaic Cells(Galvanic Cells).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 6 Electronic Structure of Atoms(6.1-6.4).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 6 Electronic Structure of Atoms(6.5-6.9).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 8 Basic Concepts of Chemical Bonding.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap. 9 Molecular Geometry and Bonding Theories(9.1-9.3).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap. 9 Molecular Geometry and Bonding Theories(9.4-9.6).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap. 9 Molecular Geometry and Bonding Theories(9.7).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap. 9 Molecular Geometry and Bonding Theories.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)discussion-organic dyes-color.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Introduction of Chem(刘萍).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 2 Naming Inorganic Compounds.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chromatography-A colarful world.pdf
- 苏州大学化学化工学院:《无机化学》课程教学资源(授课教案,药学、生物制药、中药专业).pdf
- 苏州大学医学部药学院:《生物化学(五)Biochemistry V》课程教学资源(教学大纲).docx
- 苏州大学医学部药学院:《生物化学(五)实验 Experiment of Biochemistry and Molecular Biology》课程教学资源(教学大纲).docx
- 苏州大学化学化工学院:《无机化学 Inorganic chemistry》课程教学资源(教学大纲).docx
- 苏州大学化学化工学院:《无机化学实验 Inorganic Chemistry Experiments》课程教学资源(教学大纲,药学类专业).docx
- 长春理工大学化学与环境工程学院:教学大纲合集(学科基础课程、专业教育课程、大光电课程、基础实践课程、专业实践课程、综合实践课程).pdf
- 中国科学技术大学:波色系统(PPT讲稿)超流性.ppt
- 东莞理工学院:《循环经济与可持续发展》课程教学资源(教学大纲)程可可-化卓.docx