上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 19 Chemical Thermodynamics(3/3)

Chap.20 Voltaic Cells (Galvanic Cells) The energy released in a spontaneous redox reaction can be used to perform electrical work △G=△H-T△S Voltaic or Galvanic cells are devices in which electron transfer occurs via an external circuit rather than directly between reactants. Switch 1.10 The actual charge on the Voltmeter electrode are zero. anode Na Cu Anode:the NO cathode electrode at Zn2+ which the NO Cathode:the electrode oxidation Zn(s)-Zn2i (ag)+2e Cu2 (ng)+2e Culs) at which the reduction occurs Movement of cations occurs Movement of anions
Chap.20 Voltaic Cells (Galvanic Cells) The energy released in a spontaneous spontaneous redox reaction reaction can be used to perform electrical work. Voltaic or Galvanic cells are devices in which electron transfer occurs via an external circuit rather than directly between reactants. The actual charge on the ∆ = ∆ − ∆ G H T S Cathode: the electrode at which the reduction occurs Anode: the electrode at which the oxidation occurs The actual charge on the electrode are zero

Cell EMF The difference in electrical potential between the anode and cathode is .Electromotive Force (EMF) .Cell Potential (Ece Cell Voltage (Ece Electromotive Force (EMF):The force required to push electrons through the external circuit anode 1/2H,(g)+Fe3+(aq)→H+(aq)+Fe2+(ag) nn metal =Ecathode-Eamnode-E redox couple ZnS0, CUSOA
• Electromotive Force (EMF) • Cell Potential (Ecell) •Cell Voltage (Ecell) Cell EMF The difference in electrical potential between the anode and cathode is : E E E cell cathode anode ° ° ° = − Electromotive Force (EMF): The force required to push electrons through the external circuit 3 2 2 / / cell cathode anode Fe Fe H H E E E E E + + + ° ° ° ° ° = − = − 3 2 2 1 2 ( ) ( ) ( ) ( ) H g Fe aq H aq Fe aq + + + + → + redox couple

Cell EMF Standard reduction potential Voltmeter anode Zinc The difference in potential energy per anode K Copper cathode Salt bridge electrical charge between two electrodes is measured in units of volts. Cotton SO plugs 224 ZnSOsolution CuSO,solution The charge ofone coulomb (1 C)falling though a potential difference of one volt (1 V)releases one joule (1J)ofenergy. 1V×1C=1J The maximum work that an electron can do is equal to its charge times the difference in electrical potential through which it falls
Cell EMF The difference in potential energy potential energy per electrical charge between two electrodes is measured in units of volts. E E E cell cathode anode ° ° ° = − Standard Standard reduction reduction potential 1 J 1 V 1 C = The charge of one coulomb (1 C) falling though a potential difference of one volt (1 V) releases one joule (1J) of energy. • The maximum work that an electron can do is equal to its charge times the difference in electrical potential through which it falls. 1 V 1C 1J × =

Cell EMF Standard reduction potential (Era):the voltage associated with a reduction reaction at an electrode when all solutes present at I M and all gases at I atm. Standard potential (Erd )a measure Voltmeter ofelectron-pulling power of a single electrode Zinc anode CI K Copper cathode Salt bridge Zn"(aq)+2eZn(s)E=-0.76V Cu(aq)+2eCu(s)Eo=+0.34V Cotton plugs Zn2 SO =B -E° ZnSOa solution CuSOa solution anode In a voltaic cell,the electrodes pulling in opposite directions,so the overall pulling power of a cell,the cell standard EMF,is the difference of the standard potential of two electrodes
Cell EMF Standard Standard reduction reduction potential ( ) : the voltage associated with a reduction reaction at an electrode when all solutes present at 1 M and all gases at 1 atm. Standard potential ( ) : a measure of electron electron-pulling power pulling power of a single electrode Ered ° Ered ° In a voltaic cell, the electrodes pulling in opposite directions, so the overall pulling power of a cell, the cell standard EMF, is the difference of the standard potential of two electrodes. E E E cell cathode anode ° ° ° = − 2 Zn aq e Zn s ( ) 2 ( ) + + → 2 Cu aq e Cu s ( ) 2 ( ) + + → 2 / 0.76 Zn Zn E V + ° = − 2 / 0.34 Cu Cu E V + ° = +

Page:1128 Standard Reduction Potentials at 25C* Half-Reaction E'(V) The more positive Eed the F2(g)+2e 2F(aq) +2.87 O,(g)+2H ag)+2e- O(g)+H.O +2.07 stronger the oxidizing agent Co(ag)+ →co2+(ag) +1.82 H202(ag)+H*(aq)+2e →2H0 +1.77 PbO2(s)+4H (aq)+SO (ag)+2e →P%S04()+2H0+1.70 on the left side. Ce+(ag)+ →Ce3+(ag) +1.61 MnO (aq) 8H'(ag)+5e →Mn2+(ag)+4H0 +1.51 Au(aq)+ Au(s) +1.50 Cl(g)+2e +2C1(ag) +136 CrzO月(ag) 14H(ag)+6e- →2Cr23+(aq)+7H20 +1.33 MnOx(s)+ H (ag)2e Mn2(aq)2H2O +1.23 The more positive the E O2(g)+4H ag)4e ◆2H20 +1.23 Bra()+2e →2Br(ag) +1.07 NO3(ag)+ H*(aq)3e →NO(g)+2H2O +0.96 the greater the electron- 2Hg2+(ag)+ 2 →Hg*(a +0.92 Hg(ag)+ →2Hg(0 +0.85 Ag"(ag)+ ◆Ag(s) +0.80 pulling power of the half Fe(aq)+ →Fe2t(ag) +0.77 O2(g)+2H" ag)2e- H2Oag) +0.68 MnO (ag)+2H2O 3e →MnO2(s)+4OH(ag) +059 reducing reaction. 12(s)+2e 21(q) +0.53 02(g)+2H2 +4e- 40H(aq) +0.40 Cu(ag)+ Cu(s) +0.34 AgCl(s)+ →Ags)+ClT(aq) +0.22 2= 0.20 oxidation state reduction state 0.15 0.13 The more negative the E 0.00 oxidizing agent reducing agent 0.13 0.14 the greater the electron- Ni2(aq)2e →Nis) -0.25 Co2(ag)2e →Co(s) -0.28 PbSOa(s)+2e >Pb(s)+ (aq) -0.31 donating power of the half Cd2*(aq)+2e →Cds) -0.40 Fe2(aq)2e Fe(s) -0.44 C3+(ag)+3e →Crts) -0.74 reducing reaction. Zn2(aq)+2e Zn(s) -0.76 2H0+2e H-(g)+20(aq) -0.83 Mn2+(aq)2e Mn(s) -1.18 Al+(aq)+3e →AI(s) -1.66 Be2(aq)+2e →Be(s) -1.85 Mg2"(aq)+2e →Mg() -2.37 Na (ag)+e Na(s) -2.71 Ca(ag)+2e The more negative of E, Ca(s) -2.87 Sr2*(aq)+2e →Srs) 2.89 Ba(aq)+2e →Ba(s) -2.90 the stronger the reducing K*(ag)+e K(s) -2.93 Li(aq)+e Li(s) -3.05 agent on the right side. "For all half-reactions the conc species and the pressure is I atm for gases.These are the standard-state values
The more positive E°red , the stronger the oxidizing agent on the left side. The more positive the E°red , the greater the electronpulling power of the half reducing reaction. Page:1128 The more negative of E°red , the stronger the reducing agent on the right side. The more negative the E°red, the greater the electrondonating power of the half reducing reaction. oxidizing agent reducing agent oxidation state / reduction state

Half-Reaction Page:1128 E(V) Ep.:Give an F(g)+2e→2F(ag) +2.87 increasing Ox(g)+2H"(aq)+2e-02(g)+H2O +2.07 Co“(ag)+e→Co2*(ag +1.82 order of the H2Oz(ag)+2H*(ag)+2e-2H2O +177 following PbOx(s)+4H"(ag)+SO(ag)+2e-PbSO(s)+2H2O +1.70 oxidizing Cet(aa)+eCe(ao) MnO (aq)8H"(aq)+5e →Mn2(ag)+4Hs0 agents: AU(@g+3e→AuS F1.0 C(g)+2e→2C1(aq) +136 FeCl,KMnO(H*) Cr2-(ag)14H*(ag)+6e--2Cr(aq)+7H2O +1.33 I2,K2C5O,(H+) Mno-(s)+4H(ag+2eMn2*(aq)+2H20 +123 0(g)+4H(aq)+4e→2H,0 +1.23 BT+2e→2Br(a网 NOj(aq)+4H(aq)3e-NO(g)+2H2O +0.96 2Hg2*(aq)+2e→Hgi(aq) +0.92 Ep.:Give an Hg3(aq)+2e→2Hg0 +0.85 increasing Ag'(ag)+e→Ag(s) +0.80 order of the Fe3+(ag)+e→Fe2+(ag) +0.77 O(g)+2H"(ag)+2eHO(ag) +0.68 following MnO (ag)+2H2O +3e-MnOz(s)+40H (ag) +0.59 reducing agents: 4■ 0(g)+2H,0+4e→40H(ag) +0.40 KI,FeCl,,Cu,Ag Cu(aq)+2e→Cu(S) AgCl(s)+e-Ag(s)+Cl(aq) +0.22 S0(aq)+4H'(aq)+2e→S0(g)+2H,0 +0.20 Cu2*(ag)+e→Cu(ag) +0.15 sn(ag)+2e→Sn2+(ag) +0.13 2H'(ag)+2e→HR) 0.00
3 4 2 2 2 7 , ( ) , ( ) FeCl KMnO H I K Cr O H + + Ep.: Give an increasing order of the following oxidizing agents: Ep.: Give an Page:1128 2 KI FeCl Cu Ag , , , Ep.: Give an increasing order of the following reducing agents:

Standard reduction Potentials at 25C 2H(aq) +2e →Hg) 0.00 Pb2*(aq) +2e →Pb() -0.13 Sn2*(aq) →sn9 巴0 -0.14 Ni2*(aq) + 2e →Nis) -0.25 Co2*(aq)2e →Cos -0.28 PbSO(s)+2e →pb(s)+SOi(ag) -0.31 Cd2*(aq) +24 →Cds) -0.40 Fe2*(aq) →Fe(s) -0.44 Cr(ag)+3e →C -0.74 Zn2(ag)+2e→Zn) -0.76 2H0+2e →H(g)+20H(ag) -0.83 Mn2t(aq)+2e→Mn(s -1.18 AI3*(aq)+3c→AIs) -1.66 Be*(ag)+2e →Be(s) -1.85 Mg2(aq)+ 2e →Mg(s) -2.37 Na"(aq)+e →Nas) -271 Ca2(aq)+2e→Ca(s -2.87 Sr2*(aq)+2e→Srs) -289 Ba2(aq)+2e→Bas) -2.90 Kt(aa+e→Kd -2.93 Li'(ag+e→Lis -3.05
Standard reduction Potentials at 25ºC

Chap.20 Standard Reduction Potentials Electrochemistry Oxidation state Reduction state Most positive values of Ere The strongest 2e Appendix E oxidizing agent 2(g 2F-(aq) 2H+(aq)+2e- H2(g) Increasing strength of reducing agent Li+(aq)+e- Li(s The strongest Most negative values of Ered reducing agent
Standard Reduction Potentials Oxidation state Reduction state Chap. 20 Electrochemistry The strongest oxidizing agent Appendix E The strongest reducing agent

Standard Reduction Potentials Electrical potentials:an intensive property Zn2+(aq)+2e->Zn(s),Eed=-0.76 V 2Zn2+(aq)+4e->2Zn(s),E ed=-0.76 V E:potential per electrical charge The charge ofone coulomb (1 C)falling though a potential difference ofone volt (1 V)releases one joule (1J)ofenergy. Zn(s)Zn2t(aq)+2e,Ex=+0.76 V
Zn2+(aq) + 2e- → Zn(s), E°red = - 0.76 V Standard Reduction Potentials Electrical potentials: an intensive property 2Zn2+(aq) + 4e- → 2Zn(s), E°E°red red= ? V = - 0.76 V Eo: potential per electrical charge Zn(s) →Zn2+(aq) + 2e-, E°ox = + 0.76 V 1 J 1 V 1 C = The charge of one coulomb (1 C) falling though a potential difference of one volt (1 V) releases one joule (1J) of energy

Spontaneity of Redox Reactions 自发性 氧化还原 △G:the maximum amount of useful energy obtained AH-TAS=△G=W乙from the reaction non-exp ansion △H-T△S=△G=Welectricalork △G=Welecrical work Gibbs free energy Cell potential
Spontaneity of Redox Reactions ∆ − ∆ = ∆ = H T S G Wnon ansion -exp ∆G : the maximum amount of useful energy obtained from the reaction ∆ − ∆ = ∆ = H T S G Welectrical work 自发性 氧化还原 Gibbs free energy electrical work ? ? ∆G E → → W cell ∆ = G Welectrical work ? ? Cell potential
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 19 Chemical Thermodynamics(2/3).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)polymers and plastics.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 11 Intermolecular Forces.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Nanoscale materials in chemistry.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 9 Molecular Geometry and Bonding Theories(9.4-9.7).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 9 Molecular Geometry and Bonding Theories(9.1-9.3).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 8 Basic Concepts of Chemical Bonding.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 6 Electronic Structure of Atoms(6.4-6.9).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap.20 Voltaic Cells(Galvanic Cells).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 19 Chemical Thermodynamics.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Nano-scale materials in chemistry.pdf
- 《高分子化学》课程教学资源(参考材料)Lecture Notes in Chemistry Volume 82《Principles of Polymer Design and Synthesis》.pdf
- 《高分子化学》课程教学资源(参考书籍)Paul C. Hiemenz&Timothy P. Lodge《Polymer Chemistry》第二版(Second Edition).pdf
- 《高分子化学》课程教学资源(参考书籍)CHRISTOPHER S.BRAZEL、STEPHEN L.ROSEN《FUNDAMENTAL PRINCIPLES OF POLYMERIC MATERIALS》(Third Edition).pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)自由基聚合(连锁聚合).pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)缩聚和逐步聚合.pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)缩聚和逐步聚合的实施方法.pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)体型缩聚与缩聚共聚.pdf
- 上海交通大学:《高分子化学 Polymer Chemistry》课程教学资源(课件讲稿)绪论(郭晓霞).pdf
- 上海交通大学:《清洁能源技术原理与应用》课程教学资源(课件讲义)第四章 太阳能与光伏发电.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 19 Chemical Thermodynamics(1/3).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap.20 Voltaic Cells(Galvanic Cells).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 6 Electronic Structure of Atoms(6.1-6.4).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 6 Electronic Structure of Atoms(6.5-6.9).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 8 Basic Concepts of Chemical Bonding.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap. 9 Molecular Geometry and Bonding Theories(9.1-9.3).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap. 9 Molecular Geometry and Bonding Theories(9.4-9.6).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap. 9 Molecular Geometry and Bonding Theories(9.7).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chap. 9 Molecular Geometry and Bonding Theories.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)discussion-organic dyes-color.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Introduction of Chem(刘萍).pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chapter 2 Naming Inorganic Compounds.pdf
- 上海交通大学:《大学化学 Chemistry》教学资源(课件讲稿)Chromatography-A colarful world.pdf
- 苏州大学化学化工学院:《无机化学》课程教学资源(授课教案,药学、生物制药、中药专业).pdf
- 苏州大学医学部药学院:《生物化学(五)Biochemistry V》课程教学资源(教学大纲).docx
- 苏州大学医学部药学院:《生物化学(五)实验 Experiment of Biochemistry and Molecular Biology》课程教学资源(教学大纲).docx
- 苏州大学化学化工学院:《无机化学 Inorganic chemistry》课程教学资源(教学大纲).docx
- 苏州大学化学化工学院:《无机化学实验 Inorganic Chemistry Experiments》课程教学资源(教学大纲,药学类专业).docx
- 长春理工大学化学与环境工程学院:教学大纲合集(学科基础课程、专业教育课程、大光电课程、基础实践课程、专业实践课程、综合实践课程).pdf
- 中国科学技术大学:波色系统(PPT讲稿)超流性.ppt