电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 01 Introduction To Cuda C

GPU Teaching Kit LECTURE 1 - INTROdUCTION TO cudA c CUDA C vs. Thrust vs. CUDA Libraries
CUDA C vs. Thrust vs. CUDA Libraries Accelerated Computing GPU Teaching Kit

Introduction to Heterogeneous Parallel Computing CUDA C vs.CUDA Libs vs.OpenACC Memory Allocation and Data Movement API Functions Data Parallelism and Threads 十件发女亨 University of Electrei Science and TachnolopfChina
Introduction to Heterogeneous Parallel Computing CUDA C vs. CUDA Libs vs. OpenACC Memory Allocation and Data Movement API Functions Data Parallelism and Threads

OBJECTIVES To learn the major differences between latency devices (CPU cores)and throughput devices(GPU cores) To understand why winning applications increasingly use both types of devices 电子料做女学 Universityof ElectriScience and TachnolopChina O
OBJECTIVES ▪ To learn the major differences between latency devices (CPU cores) and throughput devices (GPU cores) ▪ To understand why winning applications increasingly use both types of devices

CPU AND GPU ARE DESIGNED VERY DIFFERENTLY CPU GPU Latency Oriented Cores Throughput Oriented Cores Chip Chip Core Compute Unit Cache/Local Mem Local Cache Registers Registers SIMD Unit Contro SIMD Unit Threading 电子料发女学 Universityof Electrei Science and TachnolopChina O
CPU AND GPU ARE DESIGNED VERY DIFFERENTLY CPU Latency Oriented Cores Chip Core Local Cache Registers SIMD Unit Control GPU Throughput Oriented Cores Chip Compute Unit Cache/Local Mem Registers SIMD Unit Threading

CPUS:LATENCY ORIENTED DESIGN Powerful ALU ALU ALU Reduced operation latency Control ALU ALU Large caches CPU Convert long latency memory Cache accesses to short latency cache accesses Sophisticated control DRAM Branch prediction for reduced branch latency Data forwarding for reduced data latency 电子料皮女学 Universityof Electrei Science and TachnolofChina O
CPUS: LATENCY ORIENTED DESIGN ▪ Powerful ALU ▪ Reduced operation latency ▪ Large caches ▪ Convert long latency memory accesses to short latency cache accesses ▪ Sophisticated control ▪ Branch prediction for reduced branch latency ▪ Data forwarding for reduced data latency Cache ALU Control ALU ALU ALU DRAM CPU

GPUS:THROUGHPUT ORIENTED DESIGN Small caches To boost memory throughput GPU Simple control No branch prediction No data forwarding Energy efficient ALUs DRAM Many,long latency but heavily pipelined for high throughput .Require massive number of threads to tolerate latencies Threading logic .Thread state 电子料发女学 Universityof ElectriScience and TachnolopfChina O
GPUS: THROUGHPUT ORIENTED DESIGN ▪ Small caches ▪ To boost memory throughput ▪ Simple control ▪ No branch prediction ▪ No data forwarding ▪ Energy efficient ALUs ▪ Many, long latency but heavily pipelined for high throughput ▪ Require massive number of threads to tolerate latencies ▪ Threading logic ▪ Thread state DRAM GPU

WINNING APPLICATIONS USE BOTH CPU AND GPU .GPUs for parallel CPUs for sequential parts where parts where latency throughput wins matters .GPUs can be 10X+faster .CPUs can be 10X+faster than CPUs for parallel than GPUs for sequential code code 电子科发女学 Universityof Electri Science and Tachnolopf China O
WINNING APPLICATIONS USE BOTH CPU AND GPU ▪ GPUs for parallel parts where throughput wins ▪ GPUs can be 10X+ faster than CPUs for parallel code ▪ CPUs for sequential parts where latency matters ▪ CPUs can be 10X+ faster than GPUs for sequential code

Introduction to Heterogeneous Parallel Computing CUDA C vs.CUDA Libs vs.OpenACC Memory Allocation and Data Movement API Functions Data Parallelism and Threads 十件发女亨 University of Electrei Science and TachnolopChina
Introduction to Heterogeneous Parallel Computing CUDA C vs. CUDA Libs vs. OpenACC Memory Allocation and Data Movement API Functions Data Parallelism and Threads

OBJECTIVE .To learn the main venues and developer resources for GPU computing Where CUDA C fits in the big picture 电子料皮女学 niversitof Electr Science and TachnoloChina O
OBJECTIVE ▪To learn the main venues and developer resources for GPU computing ▪ Where CUDA C fits in the big picture

3 WAYS TO ACCELERATE APPLICATIONS Applications Libraries Compiler Programming Directives Languages Easy to use Easy to use Most Performance Most Performance Portable code Most Flexibility 电子料烛女学 University of Electricience and TachnolopChina
3 WAYS TO ACCELERATE APPLICATIONS Applications Libraries Easy to use Most Performance Programming Languages Most Performance Most Flexibility Easy to use Portable code Compiler Directives
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)NVIDIA CUDA C Programming Guide(Design Guide,June 2017).pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Methods of conjugate gradients for solving linear systems.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)NVIDIA Parallel Prefix Sum(Scan)with CUDA(April 2007).pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Single-pass Parallel Prefix Scan with Decoupled Look-back.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Program Optimization Space Pruning for a Multithreaded GPU.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Optimization Principles and Application Performance Evaluation of a Multithreaded GPU Using CUDA.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Some Computer Organizations and Their Effectiveness.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Software and the Concurrency Revolution.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)An Asymmetric Distributed Shared Memory Model for Heterogeneous Parallel Systems.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)MPI A Message-Passing Interface Standard(Version 2.2).pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)19 Firewall Design Methods.pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)18 Web Security(SQL Injection and Cross-Site Request Forgery).pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)17 Web Security(Cookies and Cross Site Scripting,XSS).pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)16 Bloom Filter for Network Security.pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)15 Bloom Filters and its Variants.pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)14 Buffer Overflow Attacks.pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)13 Human Authentication.pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)12 Secure Socket Layer(SSL)、TLS(Transport Layer Security).pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)11 Public-Key Infrastructure.pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)10 Kerberos.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 02 CUDA PARALLELISM MODEL.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 03 MEMORY AND DATA LOCALITY.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 04 Performance considerations.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 05 PARALLEL COMPUTATION PATTERNS(HISTOGRAM).pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 06 PARALLEL COMPUTATION PATTERNS(SCAN).pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 07 JOINT CUDA-MPI PROGRAMMING.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 08 Parallel Sparse Methods.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 09 Parallel patterns(MERGE SORT).pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 10 Computational Thinking.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)课程简介(杜平安).pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第一章 绪论.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二章 有限元法的基本原理(平面问题有限元法).pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第七章 动态分析有限元法 FEM of Dynamic Analysis.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第3~6章 其他问题有限元法.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第八章 热分析有限元法 FEM of Thermal Analysis.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十二章 有限元建模概述 Overview of Finite Element Modeling.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十一章 有限元建模的基本原则.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十四章 几何模型的建立.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十五章 单元类型及特性定义.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十六章 网格划分方法.pdf