电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 05 PARALLEL COMPUTATION PATTERNS(HISTOGRAM)

LECTURE 5 PARALLEL COMPUTATION PATTERNS(HISTOGRAM)
Warps and SIMD Hardware

parallel histogram Data Racing condition privatized histogram kernel 笔十1女子 Uaimraity at Eleetreie Scieeand Tecgd
2 parallel histogram Data Racing condition privatized histogram kernel

Objective To learn the parallel histogram computation pattern -An important,useful computation -Very different from all the patterns we have covered so far in terms of output behavior of each thread: Output can be modified by all participating threads. 电子科妓女学 O
3 Objective – To learn the parallel histogram computation pattern – An important, useful computation – Very different from all the patterns we have covered so far in terms of output behavior of each thread: Output can be modified by all participating threads

A Text Histogram Example Define the bins as four-letter sections of the alphabet:a-d,e-h,i-l,n- p,… For each character in an input string,increment the appropriate bin counter. 一 In the phrase "Programming Massively Parallel Processors"the output histogram is shown below: 12 10 8 0 电子神戏女学 e-h m-p q-t U-X y-Z
4 A Text Histogram Example – Define the bins as four-letter sections of the alphabet: a-d, e-h, i-l, np, … – For each character in an input string, increment the appropriate bin counter. – In the phrase “Programming Massively Parallel Processors” the output histogram is shown below: 4

A simple parallel histogram algorithm Partition the input into sections Have each thread to take a section of the input -Each thread iterates through its section. For each letter,increment the appropriate bin counter 电子科妓女学 O
5 A simple parallel histogram algorithm – Partition the input into sections – Have each thread to take a section of the input – Each thread iterates through its section. – For each letter, increment the appropriate bin counter

Sectioned Partitioning (Iteration #1) p r 0 g r a m m n g m a i e y p a r a e l p r o r Thread 0 Thread 1 Thread 2 Thread 3 0 0 0 3 0 0 0 a-d e-h i-l m-p q-t U-X y-Z 电子神越女学 0
6 Sectioned Partitioning (Iteration #1)

Sectioned Partitioning (Iteration #2) 0 r 0 g r a m m n m a i e p a r e p r 0 e Thread 0 Thread 1 Thread 2 Thread 3 2 0 0 A 1 0 0 a-d e-h i m-p q-t U-X y-2 电子神越女学 O
7 Sectioned Partitioning (Iteration #2) 7

Input Partitioning Affects Memory Access Efficiency Sectioned partitioning results in poor memory access efficiency Adjacent threads do not access adjacent memory locations Accesses are not coalesced DRAM bandwidth is poorly utilized 电子科妓女学 O
8 Input Partitioning Affects Memory Access Efficiency – Sectioned partitioning results in poor memory access efficiency – Adjacent threads do not access adjacent memory locations – Accesses are not coalesced – DRAM bandwidth is poorly utilized

Input Partitioning Affects Memory Access Efficiency Sectioned partitioning results in poor memory access efficiency Adjacent threads do not access adjacent memory locations Accesses are not coalesced DRAM bandwidth is poorly utilized 111112222233333 4444 4 Change to interleaved partitioning All threads process a contiguous section of elements They all move to the next section and repeat The memory accesses are coalesced 12 3 4 23412 3 4 1 2 3 4 1 2 3 4 电子神越女学 0
9 Input Partitioning Affects Memory Access Efficiency – Sectioned partitioning results in poor memory access efficiency – Adjacent threads do not access adjacent memory locations – Accesses are not coalesced – DRAM bandwidth is poorly utilized – Change to interleaved partitioning – All threads process a contiguous section of elements – They all move to the next section and repeat – The memory accesses are coalesced 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Interleaved Partitioning of Input For coalescing and better memory access performance r o g r a mm i n g m a ss e p a Thread 0 Thread 1 Thread 2 Thread 3 0 1 0 2 1 0 0 a-d e-h m-p q-t U-X y-z 电子神越女学 O
10 Interleaved Partitioning of Input – For coalescing and better memory access performance …
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 04 Performance considerations.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 03 MEMORY AND DATA LOCALITY.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 02 CUDA PARALLELISM MODEL.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 01 Introduction To Cuda C.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)NVIDIA CUDA C Programming Guide(Design Guide,June 2017).pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Methods of conjugate gradients for solving linear systems.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)NVIDIA Parallel Prefix Sum(Scan)with CUDA(April 2007).pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Single-pass Parallel Prefix Scan with Decoupled Look-back.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Program Optimization Space Pruning for a Multithreaded GPU.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Optimization Principles and Application Performance Evaluation of a Multithreaded GPU Using CUDA.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Some Computer Organizations and Their Effectiveness.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)Software and the Concurrency Revolution.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)An Asymmetric Distributed Shared Memory Model for Heterogeneous Parallel Systems.pdf
- 《GPU并行编程 GPU Parallel Programming》课程教学资源(参考文献)MPI A Message-Passing Interface Standard(Version 2.2).pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)19 Firewall Design Methods.pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)18 Web Security(SQL Injection and Cross-Site Request Forgery).pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)17 Web Security(Cookies and Cross Site Scripting,XSS).pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)16 Bloom Filter for Network Security.pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)15 Bloom Filters and its Variants.pdf
- 南京大学:《网络安全与入侵检测 Network Security and Intrusion Detection》课程教学资源(课件讲稿)14 Buffer Overflow Attacks.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 06 PARALLEL COMPUTATION PATTERNS(SCAN).pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 07 JOINT CUDA-MPI PROGRAMMING.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 08 Parallel Sparse Methods.pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 09 Parallel patterns(MERGE SORT).pdf
- 电子科技大学:《GPU并行编程 GPU Parallel Programming》课程教学资源(课件讲稿)Lecture 10 Computational Thinking.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)课程简介(杜平安).pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第一章 绪论.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二章 有限元法的基本原理(平面问题有限元法).pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第七章 动态分析有限元法 FEM of Dynamic Analysis.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第3~6章 其他问题有限元法.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第八章 热分析有限元法 FEM of Thermal Analysis.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十二章 有限元建模概述 Overview of Finite Element Modeling.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十一章 有限元建模的基本原则.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十四章 几何模型的建立.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十五章 单元类型及特性定义.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十六章 网格划分方法.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十七章 模型检查与处理 Model Checking and Processing.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十八章 边界条件的建立 Creation of Boundary Condition.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Fingerprinting.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Greedy and Local Search.pdf