中南大学:《X射线衍射分析技术——晶体X射线衍射学基础》X-Ray与电镜_第6章 衍射花样指数化与应用概述(苏玉长)

衍射花样指数化 苏五长 有一太
苏 玉 长 衍射花样指数化

The first step in analysing unknown powder pattern is often an attempt to find a unit cell that explains all observed lines in the spectrum You do not need additional crystallographic data, although if it exists it makes for faster and more reliable results The material to be analysed must be single phased and the experimental material must be very accurate 苏五长 有一太
苏 玉 长 The first step in analysing unknown powder pattern is often an attempt to find a unit cell that explains all observed lines in the spectrum. You do not need additional crystallographic data, although if it exists it makes for faster and more reliable results. The material to be analysed must be single phased and the experimental material must be very accurate

Indexing programs use only the positional information of the pattern and try to find a set of lattice constants(a, b,c, a, B,y)and individual Miller indices (hkl) for each line The form of equations to solve is complicated for the general case(triclinic)in direct space but is straightforward in reciprocal space. In the latter the set of equations is 苏五长 有一太
苏 玉 长 Indexing programs use only the positional information of the pattern and try to find a set of lattice constants (a,b,c,a,b,g) and individual Miller indices (hkl) for each line. The form of equations to solve is complicated for the general case (triclinic) in direct space but is straightforward in reciprocal space. In the latter the set of equations is:

Q=hA+kB+1 C+ hkD+ hIE kIF where the Q-values are easily derived from the diffraction angle (. This set has to be solved for the unknowns.ABC.de f which are in a simple way related to the lattice constants. Finding the proper values for the lattice parameters so that every observed d-spacing satifies a particular combination of Miller indices is the goal of indexing. It is not easy even for the cubic system but it is very difficult for the triclinic system 苏五长 有一太
苏 玉 长 Q = h2A + k2B + l2C+ hkD + hlE + klF where the Q-values are easily derived from the diffraction angle Q. This set has to be solved for the unknowns, A, B, C, D, E, F, which are in a simple way related to the lattice constants. Finding the proper values for the lattice parameters so that every observed d-spacing satifies a particular combination of Miller indices is the goal of indexing. It is not easy even for the cubic system, but it is very difficult for the triclinic system

There are two general approaches to indexing, the exhaustive and the analytical approach. Both of these approaches require very accurate d-spacing data. The smaller the errors the easier it is to test solutions because there are often missing data points due to intensity extinctions related to the symmetry or the structural arrangement or due to lack of resolution of the d-spacing themselves The earliest approaches were of the exhaustive type and were done by graphical fitting or numerical table fitting 苏五长 有一太
苏 玉 长 • There are two general approaches to indexing, the exhaustive and the analytical approach. Both of these approaches require very accurate d-spacing data. The smaller the errors, the easier it is to test solutions because there are often missing data points due to intensity extinctions related to the symmetry or the structural arrangement or due to lack of resolution of the d-spacing themselves. The earliest approaches were of the exhaustive type and were done by graphical fitting or numerical table fitting

Indexing programs The methods currently implemented are shown bold. They are selected through the item Indexing in the main menu Program Author Type ITo Visser analytical TrEoR Werner exhaustive POWDER DICVOL CUBIC 苏五长 有一太
苏 玉 长 • Indexing Programs • The methods currently implemented are shown bold. They are selected through the item Indexing in the main menu. • Program Author Type • ITO Visser analytical • TREOR Werner exhaustive • POWDER • DICVOL • CUBIC

The programs use a set of common parameters, e.g. the wavelength and a method specific set. After you have clicked on a program with the left mouse button indexing is immediately started with the active parameter set. Depending on the problem and computer type the program run can take from seconds to many minutes. All solutions are computed and stored internally The"best" one is displayed at the top of the screen. the next to best at the bottom for an overview of all solutions select solutions in the main menu 苏五长 有一太
苏 玉 长 • The programs use a set of common parameters, e.g. the wavelength and a method specific set. After you have clicked on a program with the left mouse button indexing is immediately started with the active parameter set. Depending on the problem and computer type the program run can take from seconds to many minutes. All solutions are computed and stored internally. The "best" one is displayed at the top of the screen, the next to best at the bottom. For an overview of all solutions select Solutions in the main menu

Miller Indices Triplet of integer numbers uniquely assigned to a Bragg reflection. The notation is usually in the form of(hkl). Formally spoken. Miller Indices represent coordinates of lattice points in reciprocal space 苏五长 有一太
苏 玉 长 • Miller Indices Triplet of integer numbers uniquely assigned to a Bragg reflection. The notation is usually in the form of (hkl). Formally spoken, Miller Indices represent coordinates of lattice points in reciprocal space

Reciprocal Space Direct space is composed of unit cells and its contents whereas reciprocal space is a lattice whose lattice points are Bragg reflections. Direct and reciprocal space are ghtly coupled 分 苏五长 有一太
苏 玉 长 • Reciprocal Space Direct space is composed of unit cells and its contents, whereas reciprocal space is a lattice whose lattice points are Bragg reflections. Direct and reciprocal space are tightly coupled

attice constants A set of maximally six floating numbers representing the unit cell. As crystal symmetry grows the number of lattice constants needed to describe the metrics of a unit cell reduce. In the cubic system there is only one constant 分 苏五长 有一太
苏 玉 长 Lattice constants A set of maximally six floating numbers representing the unit cell. As crystal symmetry grows the number of lattice constants needed to describe the metrics of a unit cell reduce. In the cubic system there is only one constant
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中南大学:《X射线衍射分析技术——晶体X射线衍射学基础》X-Ray与电镜_第5章 X射线衍射实验方法(苏玉长).ppt
- 中南大学:《X射线衍射分析技术——晶体X射线衍射学基础》X-Ray与电镜_第4章 X射线衍射线束的强度(苏玉长).ppt
- 中南大学:《X射线衍射分析技术——晶体X射线衍射学基础》X-Ray与电镜_第3章 X射线衍射的几何原理(苏玉长).ppt
- 中南大学:《X射线衍射分析技术——晶体X射线衍射学基础》X-Ray与电镜_第2章 X射线物理学基础(苏玉长).ppt
- 中南大学:《X射线衍射分析技术——晶体X射线衍射学基础》X-Ray与电镜_第1章 X射线晶体学基础(苏玉长).ppt
- 济南大学:《现代材料测试方法》PPT教学讲义(共五章,吴海涛).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第一章 绪论(材料科学系:刘天模).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第五章 材料的变形(Material Deformation).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第四章 铁碳合金(Iron-Carbon Alloy).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第十章 有色金属及合金(Non-Ferrous Metal).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第十一章 常用非金属材料(Usual Nonmetallic Materials).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第三章 相图及应用 Phase Diagrams.ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第七章 钢的热处理(Heat Treatment of Steel).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第七章 钢的热处理(Heat Treatment of Steel).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第六章 扩散(Diffusion).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第九章 铸铁(Cast Iron).ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第二章 材料的凝固 Material Concretion.ppt
- 重庆大学:《材料科学与工程基础》课程教学资源(PPT课件)第八章 工业用钢(Industry Steels).ppt
- 哈尔滨工业大学:《金属学与热处理》课程教学资源(PPT课件)Fe-Fe3C相图.ppt
- 哈尔滨工业大学:《金属学与热处理》课程教学资源(PPT课件)第三章 二元合金相图和合金的凝固(3.2)匀晶相图及固溶体的结晶.ppt
- 中南大学:《X射线衍射分析技术——晶体X射线衍射学基础》X-Ray与电镜_第7章 X射线物相分析(苏玉长).ppt
- 中南大学:《X射线衍射分析技术——晶体X射线衍射学基础》X-Ray与电镜_第8章 点阵常数(苏玉长).ppt
- 中南大学:《X射线衍射分析技术——晶体X射线衍射学基础》X-Ray与电镜_第9章 微晶尺寸晶格畸变(苏玉长).ppt
- 中南大学:《电子显微分析》_第一章 电镜的结构与成象(苏玉长).ppt
- 中南大学:《电子显微分析》_第三章 透射电子显微镜成象原理与图象解释(苏玉长).ppt
- 中南大学:《电子显微分析》_第二章 电镜中的电子衍射及分析(苏玉长).ppt
- 中南大学:《电子显微分析》_第四章 透射电子显微镜成象原理(苏玉长).ppt
- 《工程材料》课程教学资源(电子教案).doc
- 《冲压模具设计与制造》授课计划说明.doc
- 《冲压模具设计与制造》学习指南.doc
- 《冲压模具设计与制造》课程基本要求.doc
- 辽宁工业大学:《材料力学》课程教学资源(PPT课件讲稿)第四章 梁横截面上的正应力?梁的正应力强度条件.ppt
- 辽宁工业大学:《材料力学》课程教学资源(PPT课件讲稿)第十章 质点动力学的基本方程(10.1-10.2).ppt
- 辽宁工业大学:《材料力学》课程教学资源(PPT课件讲稿)第九章 压杆稳定(9-1)压杆稳定性的概念.ppt
- 辽宁工业大学:《材料力学》课程教学资源(PPT课件讲稿)第四章(4-5)梁横截面上的切应力?梁的切应力强度条件.ppt
- 辽宁工业大学:《材料力学》课程教学资源(PPT课件讲稿)第十一章 动量定理(11-1)动量与冲量.ppt
- 辽宁工业大学:《材料力学》课程教学资源(PPT课件讲稿)第十三章 能量法(13.1-13.7).ppt
- 辽宁工业大学:《材料力学》课程教学资源(PPT课件讲稿)第十二章 动量矩定理(12-1)质点和质点系的动量矩.ppt
- 辽宁工业大学:《材料力学》课程教学资源(PPT课件讲稿)第十四章 超静定结构(14.1-14.3).ppt
- 辽宁工业大学:《材料力学》课程教学资源(PPT课件讲稿)第五章 梁弯曲时的位移(5.1-5.2).ppt