清华大学:《计算机图形学基础》课程教学资源(授课教案)网格参数化模型切割的骨架算法

Sk l t e e on-B d S C t ti Based Seam Computation for Triangulated Surface Parameterization Shi-Min Hu T i h U i it B iji Tsinghua University, Beijing Tsinghua University 2009.3.30

1 Parametrization and seam computing 1. Parametrization and seam computing • Triangle meshes and parameterization(参数化) – Due to flexibility and efficiency triangle meshes Due to flexibility and efficiency, triangle meshes have been widely used in the entertainment industry to represent arbitrary surfaces for 3D industry to represent arbitrary surfaces for 3D games and movies during the last few years. – Many new mesh techniques have been developed Many new mesh techniques have been developed for different applications. In these techniques, parameterization is a key issue. parameterization is a key issue. – Parameterization provides mapping between meshes and a domain Tsinghua University 2009. 3.30 meshes and a domain

– Parameterization methods can be grouped into three cate g ( ories (类别), p g de pendin g on whether the domain is a polyhedron(多面体), sphere or plane. Base -mesh Spherical Planar Tsinghua University 2009. 3.30 Base mesh Spherical Planar

• Seam(缝) computing – Our goal is to map an arbitrary topology( Our goal is to map an arbitrary topology(拓扑) surface mesh to a single chart with low distortion(扭曲) Theoretically any closed surface ). Theoretically, any closed surface can be opened into a topological disc(圆盘) using a set o cut edges a g up a sea . Cutt g a o g of cut edges making up a “seam”. Cutting along the seam, we can get a disc-like patch. Tsinghua University 2009. 3.30

– Unless the surface is developable, parameterization using a single chart inevitably( using a single chart inevitably(不可避免的) creates ) creates distortion(扭曲), which is especially great where p ( rotrusions (突出物 ) of the surface are flattened into the plane. (such as fingers of a hand and horses' legs) Tsinghua University 2009. 3.30

– It’s found that to reduce the distortion, it is important for the seam to p g ass throu gh the various so-called “extrema”(极值点). – Althou gh extrema can be found accurately, it is still difficult to guide the seam through these extrema. the seam through these extrema. Tsinghua University 2009. 3.30

The objective(目标), is to consider seam computation with given is to consider seam computation with given extremal vertices (we called extrema(极值点)). Tsinghua University 2009. 3.30

2 Related Work 2. Related Work • To seek a good seam, we should follow two strategies(策略): – The seam should pass through all The seam should pass through all extremal vertices extremal vertices. – The seam’s length should be minimum( The seam’s length should be minimum(最小). Tsinghua University 2009. 3.30

– For given extremal vertices, To find a minimum length seam connecting all extremal vertices comes down to seam connecting all extremal vertices comes down to the Steiner Tree problem in Graph Theory. For a given weighted graph, it weighted graph, it s’ a NP -complete problem. complete problem. – Two main approximated algorithm for it are Minimum spanning tree (MST) method and Greedy algorithm spanning tree (MST) method and Greedy algorithm. Sheffer and Gu use those two methods for seam computing respectively computing respectively. Tsinghua University 2009. 3.30

• Gu etal. “Geometry Image” (几何图像 ) – Gu et al first find an initial cut that opens mesh Gu et al. first find an initial cut that opens mesh M into a disk. – Extrema was found by utilizing the shape Extrema was found by utilizing the shape -preserving preserving feature of Floater's parameterization. – when a new extremal vertex is detected, the shortest path between the current seam and the new extremal vertex is added to the seam. Tsinghua University 2009. 3.30
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)网格模型、网格细分和简化.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)参数曲线曲面、Bezier曲线、Bezier曲面.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)光线跟踪,递归算法,光线求交.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)双向反射分布函数.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)视图模型变换.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)图形学简介.pdf
- 清华大学:《计算机图形学基础》课程教学大纲 Fundamental of Computer graphics(负责人:胡事民).pdf
- 揭阳职业技术学院:《Photoshop制图》课程授课教案.pdf
- 揭阳职业技术学院:《计算机应用基础》课程授课教案.pdf
- 揭阳职业技术学院:《图像处理》课程授课教案.pdf
- 揭阳职业技术学院:《办公自动化》课程授课教案.pdf
- 揭阳职业技术学院:《程序设计基础》课程授课教案.pdf
- 揭阳职业技术学院:《物联网》课程授课教案.pdf
- 揭阳职业技术学院:《计算机应用基础》课程授课教案.pdf
- 揭阳职业技术学院:《Linux操作系统》课程教学资源(实验教案,共十八个).pdf
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 8-标准模板库STL.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 7-模板.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 6-异常处理.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 5-继承多态和虚函数.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 4-类的高级部分.ppt
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)B样条曲线曲面.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)光线跟踪加速方法.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)纹理映射.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)阴影 Shadow.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)图形学基本概念题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)B样条曲线习题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)Bezier曲线习题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)真实感图形学习题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)模拟试题及答案(一).pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)模拟试题及答案(二).pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)模拟试题及答案(三).pdf
- 《Java程序设计》课程教学课件(PPT讲稿)第1章 计算机、程序和Java概述.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第2章 基本程序设计.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第3章 选择.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第4章 循环.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第5章 方法.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第6章 一维数组.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第7章 多维数组.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第8章 对象和类.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第9章 字符串和文本I/O.ppt
