清华大学:《计算机图形学基础》课程教学资源(授课教案)双向反射分布函数

BRDF(双向反射分布函数) • BRDF – Bidirectional Reflectance Distribution Function – Describe how light is reflected from a surface • Preliminary for BRDF • BRDF:definition and Properties • BRDF Models • BRDF Measurement

Illumination(光照、照明) • Illumination can be classified as local or global. – Local illumination is concerned with how objects are directly illuminated by light sources. – Global illumination includes how objects are illuminated by light from locations other than light sources, Including by reflection of other objects and refraction through objects. Local illumination

Illumination(光照、照明) • Illumination can be classified as local or global. – Local illumination is concerned with how objects are directly illuminated by light sources. – Global illumination includes how objects are illuminated by light from locations other than light sources, Including by reflection of other objects and refraction through objects. Today’s Topic: a physical description of how light is reflected from a surface, which is known as BRDF

Preliminary • Before introducing BRDF, we review some preliminary concepts. – Spherical Coordinate (球面坐标) – Solid Angle (立体角) – Foreshortened Area (投影面积) – Radiant Energy (光能) – Radiant Flux (光通量) – Irradiance (辉度) – Intensity (发光强度) – Radiance (光亮度)

Spherical Coordinate (球面坐标) • Since light are mostly expressed in terms of directions, it is generally more convenient to describe them by spherical coordinates rather than by cartesian coordinate vectors

Spherical Coordinate (球面坐标) • Since light are mostly expressed in terms of directions, it is generally more convenient to describe them by spherical coordinates rather than by cartesian coordinate vectors. • As illustrated in the figure, a vector in spherical coordinates is specified by three elements. – magnitude r denotes the length of the vector. – Θ measures the angle between the vector and the z-axis, – ψ represents the counterclockwise angle on the x-y plane from the x-axis to the projection of the vector onto the xy plane

Spherical Coordinate (球面坐标) • Relationship between Cartesian(笛卡尔) and spherical coordinates – (x,y,z) (r, Θ, ψ) • Conversion • r = sqrt(x^2+y^2+z^2) • Θ = acos(z/r); • ψ = atan2(y,x); • z = r cos(Θ); • y = r sin(Θ)sin(ψ); • x = r sin(Θ)cos(ψ);

Solid Angle(立体角) • Light generally arrives at or leaves a surface point from a range of directions that is denoted by solid angles. solid angles represents a 3D generalization of angle formed by a region on a sphere. • Max value of a solid angle is , which is given by a sphere. 4 2 ds d r

Solid Angle(立体角) • For a differential solid angle described by differential angles in the directions, its differential area dA on the sphere is • From the solid angle definition, the differential solid angle is given by: 2 sin dA d d d r 2 dA rd r d r d d ( )( sin ) sin d,d ,

Foreshortened Area(投影面积) • The apparent area of a surface patch according to the angle at which it is viewed • For a surface patch of area A, its foreshortened area from direction θis given as A cos(θ), since its apparent length in the x direction is scaled by cos(θ). Area A cos
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)视图模型变换.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)图形学简介.pdf
- 清华大学:《计算机图形学基础》课程教学大纲 Fundamental of Computer graphics(负责人:胡事民).pdf
- 揭阳职业技术学院:《Photoshop制图》课程授课教案.pdf
- 揭阳职业技术学院:《计算机应用基础》课程授课教案.pdf
- 揭阳职业技术学院:《图像处理》课程授课教案.pdf
- 揭阳职业技术学院:《办公自动化》课程授课教案.pdf
- 揭阳职业技术学院:《程序设计基础》课程授课教案.pdf
- 揭阳职业技术学院:《物联网》课程授课教案.pdf
- 揭阳职业技术学院:《计算机应用基础》课程授课教案.pdf
- 揭阳职业技术学院:《Linux操作系统》课程教学资源(实验教案,共十八个).pdf
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 8-标准模板库STL.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 7-模板.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 6-异常处理.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 5-继承多态和虚函数.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 4-类的高级部分.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 3-类的基础部分.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 2-文件操作.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 1-C++程序设计基础.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,一)09 编译预处理和多文件项目.pptx
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)光线跟踪,递归算法,光线求交.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)参数曲线曲面、Bezier曲线、Bezier曲面.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)网格模型、网格细分和简化.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)网格参数化模型切割的骨架算法.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)B样条曲线曲面.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)光线跟踪加速方法.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)纹理映射.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)阴影 Shadow.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)图形学基本概念题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)B样条曲线习题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)Bezier曲线习题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)真实感图形学习题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)模拟试题及答案(一).pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)模拟试题及答案(二).pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)模拟试题及答案(三).pdf
- 《Java程序设计》课程教学课件(PPT讲稿)第1章 计算机、程序和Java概述.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第2章 基本程序设计.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第3章 选择.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第4章 循环.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第5章 方法.ppt
