清华大学:《计算机图形学基础》课程教学资源(授课教案)B样条曲线曲面

Today s’ Topics • Why splines? • B-Spline Curves and properties • B-Spline surfaces Spline surfaces • NURBS curves and Surfaces

Why to introduce B Why to introduce B -Spline (B Spline (B样条 ) • Bezier curve/surface has many advantages, but the y have two main shortcomin gs: – B e e cu ve/su ace ca ot be od ed oca y zi er cu rve/surface cannot be modified locall y (局部修改). – It i l t ti f t i ti it It is very comp lex to sati s fy geome t r ic continuity conditions for Bezier curves or surfaces joining

• History of B-splines – I 1946 n, Sh b c oen erg proposed li a sp ne-b d ase method to approximate curves. – It’s motivated by runge-kutta problem in interp g g py y g olation: high degree polynomial may surge upper and down – Wh t l d i i l i l Why not use lower degree piecewise polynomial with continuous joining? – that’s Spline

– But people thought it’s impossible to use Spline in shape design because complicated in shape design, because complicated computation – I 1972 b d S h b ’ k G d In 1972, base d on S c hoen berg’s wor k, Gor don and Riesenfeld introduced “B-Spline” and lots of di i l i h f corresponding geometr ic a lgor i t hms. – B-Spline retains all advantages of Bezier curves, and overcomes the shortcomings of Bezier curves

• Tips for understanding B-Spline? – Spline function interpolation is well known it can Spline function interpolation is well known, it can be calculated by solving a tridiagonal equat ions (三对角方程). – For a given partition of an interval, we can compute Spline curve interpolation similarly. – All splines over a given partition will form a All splines over a given partition will form a linear space. The basis function of this linear space i ll d B is call e d B -S li b i f i S pline bas is funct ion

– Similar to Bezier Curve using Bernstein basis f nctions B functions, B -Spline c r es ses B Spline c u r ves uses B -Spline basis Spline basis functions

B-Spline curves and it’s Properties • Formula of B-Spline Curve. ∑ n ( ) ( ), [0,1] , 0 =Σ ∈ = P t P B t t i i n n i are control points ∑ = = i i i k P t PN t 0 , ( ) ( ) – P (i 0 1 ) are control points. – (i=0,1,.,n) are the i-th B-Spline basis function P (i 0,1, , n) i = L ( ) , N t i k of order k. B-Spline basis function is a order k (degree k -1) piecewise polynomial (分段多项式) determined by the knot vector, which is a nondecreasing set of numbers

• Demo of B-spline • The story of order & degree The story of order & degree – G Farin: degree, Computer Aided Geometric Design – L Pi l d C Aid d D i Les Pieg l: or der, Computer Aid e d Des ign

B-Spline Basis Function Spline Basis Function • Definition of B-Spline Basis Function – de Boor-Cox recursion formula: ⎧ t < x < t 1 i i 1 ⎩⎨⎧ < < = + Otherwise t x t N t i i i 01 ( ) 1 ,1 tt t t − − , , 1 1, 1 1 1 () () () i ik ik ik i k ik i ik i tt t t Nt N t N t t t tt + − +− +− + + = + − − – Knot Vector: a sequence of non-decreasing number t t L t t L t t L t t k k n n n k n k t t t t t t t t − + + − + , , , , , , , , , , 0 1 L 1 L 1 L 1

• , i = 0 k =1 • , i = 0 k = 2 ⎧1 t < x < t ⎩⎨⎧ < < = + Otherwise t x t N t i i i 01 ( ) 1 ,1 , , 1 1, 1 1 1 () () () i ik ik ik i k ik i ik i tt t t Nt N t N t t t tt + − +− +− + + − − = + − −
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)网格参数化模型切割的骨架算法.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)网格模型、网格细分和简化.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)参数曲线曲面、Bezier曲线、Bezier曲面.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)光线跟踪,递归算法,光线求交.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)双向反射分布函数.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)视图模型变换.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)图形学简介.pdf
- 清华大学:《计算机图形学基础》课程教学大纲 Fundamental of Computer graphics(负责人:胡事民).pdf
- 揭阳职业技术学院:《Photoshop制图》课程授课教案.pdf
- 揭阳职业技术学院:《计算机应用基础》课程授课教案.pdf
- 揭阳职业技术学院:《图像处理》课程授课教案.pdf
- 揭阳职业技术学院:《办公自动化》课程授课教案.pdf
- 揭阳职业技术学院:《程序设计基础》课程授课教案.pdf
- 揭阳职业技术学院:《物联网》课程授课教案.pdf
- 揭阳职业技术学院:《计算机应用基础》课程授课教案.pdf
- 揭阳职业技术学院:《Linux操作系统》课程教学资源(实验教案,共十八个).pdf
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 8-标准模板库STL.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 7-模板.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 6-异常处理.ppt
- 南京航空航天大学:《程序设计》课程教学课件(PPT讲稿,二)Chapter 5-继承多态和虚函数.ppt
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)光线跟踪加速方法.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)纹理映射.pdf
- 清华大学:《计算机图形学基础》课程教学资源(授课教案)阴影 Shadow.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)图形学基本概念题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)B样条曲线习题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)Bezier曲线习题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)真实感图形学习题解答.pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)模拟试题及答案(一).pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)模拟试题及答案(二).pdf
- 清华大学:《计算机图形学基础》课程教学资源(试卷习题)模拟试题及答案(三).pdf
- 《Java程序设计》课程教学课件(PPT讲稿)第1章 计算机、程序和Java概述.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第2章 基本程序设计.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第3章 选择.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第4章 循环.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第5章 方法.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第6章 一维数组.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第7章 多维数组.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第8章 对象和类.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第9章 字符串和文本I/O.ppt
- 《Java程序设计》课程教学课件(PPT讲稿)第10章 关于对象的思考.ppt
