有效场论、全息原理暴胀宇宙与暗能量

有效场论、全息原理 暴胀宇宙与暗能量
有效场论、全息原理 暴胀宇宙与暗能量

Effective Field Theory Holographic Principle Entropy SNL3A3 3A3≤SBH=D2M An effective field theory that can saturate the equation necessarily includes many states with Schwarzschild radius much larger than the box size An effective quantum field theory is expected to be capable of describing a system at a temperature T, provided that t sA, so long as T >>1/L Thermal energy MLT Entropy S~L732m=n⑦~(M/L The corresponding schwarzschild radius LSN L(LMP)2/>L
Effective Field Theory & Holographic Principle An effective field theory that can saturate the equation necessarily includes many states with Schwarzschild radius much larger than the box size. An effective quantum field theory is expected to be capable of describing a system at a temperature T , provided that T ≤ Λ ,so long as T ≫ 1/L. Thermal energy Entropy The corresponding Schwarzschild radius Entropy

Local quantum field theory appears unlikely to be a good effective low energy description of any system containing a black hole, and should probably not attempt to describe particle states whose volume is smaller than their corresponding schwarzschild radius To avoid these difficulties Cohen-Kaplan-Nelson propose a stronger constraint on the ir cutoff 1/l which excludes all states that lie within their Schwarzschild radius. Since the maximum energy density in the effective theory is M4, the constraint on L is L3A4≤LM Thermal energy M~L374≈1L3A4 La 2gm Schwarzschild radius r Ls L
To avoid these difficulties Cohen-Kaplan-Nelson propose a stronger constraint on the IR cutoff 1/L which excludes all states that lie within their Schwarzschild radius. Since the maximum energy density in the effective theory is Λ^4, the constraint on L is Thermal energy ~ ~ Schwarzschild radius Local quantum field theory appears unlikely to be a good effective low energy description of any system containing a black hole, and should probably not attempt to describe particle states whose volume is smaller than their corresponding Schwarzschild radius

Effective Field Theory Holographic Principle Holographic Principle: (Cohen-Kaplan-Nelson, PRL1999 In Effective Field Theory, UV Cut-off u is related to the IR Cut-off L due to the limit set by the formation of a black hole 4 LA LM LIV Effective Theory describes all states of system except those already collapsed to a Black Hole Vacuum energy density via quantum fluctuation 2 vac 4 N MAL A uV
Holographic Principle: (Cohen-Kaplan-Nelson, PRL1999) In Effective Field Theory, UV Cut-off is related to the IR Cut-off due to the limit set by the formation of a Black Hole Effective Theory describes all states of system except those already collapsed to a Black Hole. Vacuum energy density via quantum fluctuation Effective Field Theory & Holographic Principle

Holographic Dark Energy Holographic Dark Energy Model Dark energy density is given by the vacuum energy density caused via quantum fluctuation Pde=3 2M2L-2 L Characteristic length scale of universe Model parameter MP Reduced Planck mass Choosing different characteristic length scale L Various Holographic Dark Energy Models Review see: M. Li, X.-D. Li, S. Wang, Y Wang, CTP. 56, 525-604 (2011)[arXiv: 1103. 5870] M. Li, Phys. Lett. B 603, 1(2004) [arXiv: hep-th/0403127] R-G Cai, Phys. Lett. B 657, 228-231(2007) [arXiv: 0707 4049 [hep-th]l
Holographic Dark Energy Holographic Dark Energy Model: Dark energy density is given by the vacuum energy density caused via quantum fluctuation Characteristic length scale of universe Choosing different characteristic length scale L → Various Holographic Dark Energy Models Review see: M. Li, X. -D. Li, S. Wang, Y. Wang, CTP. 56, 525-604 (2011) [arXiv:1103.5870]. M. Li, Phys. Lett. B 603, 1 (2004) [arXiv:hep-th/0403127]. R. -G. Cai, Phys. Lett. B 657, 228-231 (2007) [arXiv:0707.4049 [hep-th]]. Model parameter Reduced Planck mass

Holographic Dark Energy Characterized by Conformal-age-like Length(CHDE) Z P. Huang, YLW, arXiv: 1202. 2590, Z P Huang, YLW, arXiv: 1202.3517 [astro-ph CO]
Holographic Dark Energy Characterized by Conformal-age-like Length (CHDE) Z.P. Huang, YLW, arXiv:1202.2590, Z.P. Huang, YLW, arXiv:1202.3517 [astro-ph.CO]

Holographic Dark Energy Characterized by Conformal-age-like Length(CHDE) Conformal-age-like length scale of universe dt dta(r) a4(r)≡ dna() +(t √0 al ar+(1) Motivated from 4D space-time volume of FRW Universe g a(t)· dra(t) 0 0 Fractional energy density of CHDe Friedman Equation pde d- e 3M2H2 H2L2 3M#H=Pm pde
Conformal-age-like length scale of universe Motivated from 4D space-time volume of FRW Universe Holographic Dark Energy Characterized by Conformal-age-like Length (CHDE) Fractional energy density of CHDE Friedman Equation

Equation of Motion of CHe Conservation of energy density Friedman equation p+3H(1+w)=0田9+Qn=1 Eos for Che Density with constant Wm 82V9 3 3d a IOm= C1a-3(1+Wm) CHDE 1+3m)(1 Ha aa rd V3MF o H'a vdHa Equation of motion for CHDE dede Q2 (1-92)3(1+wm)+8 a
Equation of Motion of CHDE Conservation of energy density Friedman equation EoS for CHDE Equation of motion for CHDE Density with constant CHDE

Solution of eom for cede At early time of universe a≤1 Assuming Dark energy is negligible de Equation of motion for CHDE in a good approximation d e 3(1+wm)+8、2√gde de Solution of eom for CHDe consIstency Qde a -(3+Wm)2d2a2 Qde <1 a<1
Solution of EoM for CHDE At early time of universe Assuming: Dark energy is negligible Equation of motion for CHDE in a good approximation Solution of EoM for CHDE consistency

nflationary Universe Conformal-age-like Length of CHDE Consistent check from L- I c 0 0 ha At early time of universe a< 1with Q≈1 Universe with constant 3(1+wm Conformal-age-like Length of CHDE 2 L a/ 3(3+Wm)Ha Haia 1)2=d( a)<1-L Odee(3+Wm)2d2a 3(3+Wm)ha 4 Wm=-1 m=1/3 L-3hal n de 9da2L-shalode e 25d-a2
Inflationary Universe & Conformal-age-like Length of CHDE At early time of universe with Universe with constant Conformal-age-like Length of CHDE = -1 = 1/3 Consistent check from L
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《光学 Optics》课程教学资源(PPT课件讲稿)第三章 干涉装置、光场的时空相干性.ppt
- 电子科技大学:《大学物理学》课程教学资源(PPT课件讲稿)第一篇 力学(Mechanics)第1章 质点运动学(Kinematics of particle).ppt
- 中国科学技术大学物理系:《半导体物理学 Physics of Semiconductors》课程教学资源(PPT课件讲稿)第五章 PN结.ppt
- 《电磁场理论》课程教学资源(PPT课件讲稿)第八章 电磁波辐射.ppt
- 中国科学院高能物理研究所:暴涨宇宙学与暗能量(PPT讲稿)粒子宇宙学简介(张新民).ppt
- 等离子体技术系列物理实验(报告讲稿PPT).ppt
- 介质中的静电场(PPT讲稿).ppt
- 《量子力学》课程教学资源(课件讲稿)前言、第一章 绪论.pdf
- 清华大学:Asymptotic Freedom(PPT讲稿)A Colorful Story for Understanding the Strong Force.ppt
- 中国科学技术大学:国家级精品课程《大学物理实验》教学资源(PPT讲座)光的力学效应系列实验(李银妹).ppt
- 南京大学:Quantum tunnel effect and alpha-decay of nuclei.ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第28讲 狭义相对论 §3.3 相对论理论四维形式.ppt
- 清华大学:《粒子物理与核物理实验中的数据分析》课程教学资源(PPT讲稿)第一讲 Linux环境下编程(二).ppt
- 《大学物理》课程教学资源(习题与解答)第一章 运动学.ppt
- 赣南师范大学(赣南师范学院):《光电子技术学》课程教学资源(PPT课件)激光原理和技术简介(制作:王形华).ppt
- 太原师范学院:本科毕业生教育实习教案(高一物理——太阳与行星间的引力).doc
- 上海交通大学物理系:原子核低激发态的系统研究(赵玉民).ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第19讲 电磁波的传播 §5.2 电磁波在介质界面上的反射和折射.ppt
- 《电磁场与电磁波》课程电子教案(PPT教学课件)第7章 导行电磁波.ppt
- 清华大学:粒子物理与核物理实验中的数据分析(PPT课件讲稿)第五讲 统计检验(主讲:杨振伟).ppt
- 《电子存储环物理》课程教学资源(PPT课件讲稿)第二讲 同步辐射——横向运动(上).pptx
- 《电子存储环物理》课程教学资源(PPT课件讲稿)第九讲 储存环 Lattice、极化束流.pptx
- 太原师范学院:物理系物理学专业实验课教学大纲汇编.doc
- 电流保护接线、线路相间短路的三段式电流保护.ppt
- 大学物理《力学》课程教学资源(PPT课件讲稿)第八章 狭义相对论.ppt
- 中国科学院:从量子信息观点看量子统计和热力学(理论物理研究所:孙昌璞).ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第4讲 静电场 §2.2 静电势的多极展开.ppt
- Smaller is different and more:Low dimensionalsuperconductivity for new physics and applications.pptx
- 中国科学院高能物理研究所:粒子物理标准模型和Nobel物理奖(PPT讲稿,黄涛).ppt
- 《高分子物理》课程教学资源(PPT课件讲稿)第五章 高聚物的物理性能.ppt
- 香港科技大学:Physics of the Cosmological Collider(PPT讲稿)Non-Gaussianity in the Post-Planck Era.pptx
- 山东大学:《医学物理学》课程教学资源(PPT课件讲稿)第三章 流体的流动.ppt
- 《大学物理》课程教学资源(PPT课件)第十七章 量子力学基础.ppt
- 《大学物理》课程教案(力学基础教案).doc
- X射线与物质的相互作用(PPT课件讲稿).ppt
- 《原子物理学 Automic Physics》课程教学资源(PPT课件讲稿)第三章 碱金属原子光谱.ppt
- 临沂大学(临沂师范学院):《中学物理教学法》课程教学资源(教学方案).doc
- 超新星遗迹的射电巡天观测和甚高能伽玛射线源研究.ppt
- 中国科学院高能物理研究所:强子谱研究前沿简介(PPT讲稿).ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第31讲 真空中的电动力学总复习.ppt