中国高校课件下载中心 》 教学资源 》 大学文库

香港科技大学:Physics of the Cosmological Collider(PPT讲稿)Non-Gaussianity in the Post-Planck Era

文档信息
资源类别:文库
文档格式:PPTX
文档页数:64
文件大小:8.71MB
团购合买:点击进入团购
内容简介
香港科技大学:Physics of the Cosmological Collider(PPT讲稿)Non-Gaussianity in the Post-Planck Era
刷新页面文档预览

Physics of the cosmological collider Non-Gaussianity in the post-Planck era Yi Wang王一,2017.03.03 The Hong Kong University of Science and Technology

Physics of the Cosmological Collider -- Non-Gaussianity in the Post-Planck Era Yi Wang 王一, 2017.03.03 The Hong Kong University of Science and Technology

Collaboration with ⅹ.Chen0909.0496,0911.3380,1205.0160 X Chen&z.Z. Xianyu160407841,1610.06597,161208122 ⅹ.Chen&MH. NamJoo1509.03930,1601.06228,1608.01299

Collaboration with X. Chen 0909.0496, 0911.3380, 1205.0160 X. Chen & Z. Z. Xianyu 1604.07841, 1610.06597, 1612.08122 X. Chen & M. H. Namjoo 1509.03930, 1601.06228, 1608.01299

DAWN MIME inflation tiny fraction of a second 380.000 years 13.7 billion vears

Review of non -g before planck

Review of Non-G before Planck

Inflationary (aveNt )correlation functions k,<k,…kn) S: curvature fluctuation on uniform density slices 分n(CMB,3eLss)

Inflationary (𝑎~𝑒 𝐻𝑡 ) correlation functions 〈 𝜁𝐤1 𝜁𝐤2 …𝜁𝐤𝑛 〉 𝜁: curvature fluctuation on uniform density slices 𝜁 ⇔ 𝛿𝑇 𝑇 (CMB), 𝜁 ⇔ 𝛿𝜌 𝜌 (LSS)

How to calculate(Sk, Sk Sk)? in-in formalism (9Q(7)2)=0|e/m()Q(r)re-nH1(r)d9 expansion order by order "Feynman, diagrams

How to calculate 〈 𝜁𝐤1 𝜁𝐤2 …𝜁𝐤𝑛 〉 ? in-in formalism expansion order by order ~ “Feynman” diagrams

Inflationary(avent) correlation functions S: curvature fluctuation on uniform density slices T 3台(CMB,3分(LSS) (k1sk2<k3)=(2)63(k1+k2+k3) k2k2k3 F(k1/k3, k2/ k3) size of non-G: fN NL Ps 2pt F shape: shape of non-G

Inflationary (𝑎~𝑒 𝐻𝑡 ) correlation functions 〈 𝜁𝐤1 𝜁𝐤2 …𝜁𝐤𝑛 〉 𝜁: curvature fluctuation on uniform density slices 𝜁 ⇔ 𝛿𝑇 𝑇 (CMB), 𝜁 ⇔ 𝛿𝜌 𝜌 (LSS) 𝑃𝜁 ~ 2pt F { size of non-G: ~ 𝑓𝑁𝐿 shape: shape of non-G

Local shape non-G 2 0.6 0.4k2/ka3 ki/k

Local shape non-G:

Example of local non-G: the curvaton scenario Sasaki. valiviita. Wands 2006 inflaton curvaton assuming same decay product decayed decayed entropy pertur bation becomes adiabatic curvaton density catches up decayed oscillation perturbation starts to gravitate curvaton has entropy perturbation slow rolling more slowly rolling inflaton perturbation assumed small 5 NL (+m)=3 5r 36 2 3Sx, dec 4-O x, dec 3px+4prIt 0.00.20.40.60.81.0

Example of local non-G: the curvaton scenario: Sasaki, Valiviita, Wands 2006

Equilateral and orthogonal shapes of non-G -0.5 0.4 -1 k2/k3 k2/k3 k/206

Equilateral and orthogonal shapes of non-G:

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档