《紫外-可见光谱》课程PPT教学课件(讲稿,英文版)Visible and Ultraviolet Spectroscopy

Visible and Ultraviolet Spectroscopy An obvious difference between certain compounds is their color In this respect the human eye is functioning as a spectrometer analyzing the light reflected from the surface of a solid or passing through a liquid Wavelength is defined on the left below as the distance between adjacent peaks(or troughs), and may be designated in meters centimeters or nanometers(10-9 meters ). Frequency is the number of wave cycles that travel past a fixed point per unit of time, and is usually given in cycles per second, or hertz(Hz) Visible wavelengths cover a range from approximately 400 to 800 nm
Visible and Ultraviolet Spectroscopy An obvious difference between certain compounds is their color. In this respect the human eye is functioning as a spectrometer analyzing the light reflected from the surface of a solid or passing through a liquid. Wavelength is defined on the left below, as the distance between adjacent peaks (or troughs), and may be designated in meters, centimeters or nanometers (10-9 meters). Frequency is the number of wave cycles that travel past a fixed point per unit of time, and is usually given in cycles per second, or hertz (Hz). Visible wavelengths cover a range from approximately 400 to 800 nm

DIspersion white Angle Light Red orange Yell Green Prism B n ed Violet

“ ROY G BIV wAvelength Amplitude Violet: 400-420 nm 420-440 Blue: 440-490 nm Green: 490-570 nm Higher Visible Spectrum L。wer Yellow 570-585nm Frequency Frequency ge:585-620 IR Red:620-780nm 400 500 60o 700800 Wavelength in nanometers
Violet: 400 - 420 nm Indigo: 420 - 440 nm Blue: 440 - 490 nm Green: 490 - 570 nm Yellow: 570 - 585 nm Orange: 585 - 620 nm Red: 620 - 780 nm “ROY G BIV

Color wheel 620nm 800 nm 580nm 400nm 560 nm 430nm 490nm Complementary colors are diametrically opposite each other Thus absorption of 420-430 nm light renders a substance yellow. and absorption of 500-520 nm light makes it red green is unique in that it can be created by absoption close to 400 nm as well as absorption near 800 nm
Complementary colors are diametrically opposite each other. Thus, absorption of 420-430 nm light renders a substance yellow, and absorption of 500-520 nm light makes it red. Green is unique in that it can be created by absoption close to 400 nm as well as absorption near 800 nm. Color wheel

Some Natural Organic Pigments OH o CH3 O H CO2H HO OH OH O Kermesic Acid (Carminic Acid Z=H from the insect coccus cacti Indigo from Isatis tinctoria (woad) Z=Br Punicin or Tyrian Purple from mollusks of the genus Murex Crocetin CH3 CH3 from saffron B-carotene from carrots extensively conjugated pi-electrons
“extensively conjugated pi-electrons

The Electromagnetic Spectrum The Electromagnetic Spectrum Visible X-Rays Microwave UY Rays Radio meters 1013 10 109 10 105 103 10 10 m Wavelength 1011 10 10 105 10-3 10 10 nm 104 10 102 10 10 10 Frequency Hz 1021 1019 10 1015 1013 10 10 Energy kcal⊥ 10 10 102 10 10 U=C/\ U=frequency, n=wavelength, c=velocity of light(c=3.1010 cm/sec) AE=hu E=energy U=frequency h=planck s constant(h=6.6.10-27 erg sec)
The Electromagnetic Spectrum

Electronic transitions The absorption of uv or visible radiation corresponds to the excitation of outer electrons There are three types of electronic transition which can be considered Transitions involving p, S, and n electrons Transitions involving charge-transfer electrons Transitions involving d and f electrons(not covered in this unit When an atom or molecule absorbs energy electrons are promoted from their ground state to an excited state. In a molecule, the atoms can rotate and vibrate with respect to each other These vibrations and rotations also have discrete energy levels, which can be considered as being packed on top of each electronic level Rotational Vibrational electronic levels electronic levels
Electronic transitions The absorption of UV or visible radiation corresponds to the excitation of outer electrons. There are three types of electronic transition which can be considered; Transitions involving p, s, and n electrons. Transitions involving charge-transfer electrons Transitions involving d and f electrons (not covered in this Unit) When an atom or molecule absorbs energy, electrons are promoted from their ground state to an excited state. In a molecule, the atoms can rotate and vibrate with respect to each other. These vibrations and rotations also have discrete energy levels, which can be considered as being packed on top of each electronic level

UV-Visible Absorption Spectra The energies noted above are sufficient to promote or excite a molecular electron to a higher energy orbital. Consequently, absorption spectroscopy carried out in this region is sometimes called"electronic spectroscopy g(anti-bonding) π(anti- bonding) n+兀 n(non-bonding) π( bonding) o(bonding)
UV-Visible Absorption Spectra The energies noted above are sufficient to promote or excite a molecular electron to a higher energy orbital. Consequently, absorption spectroscopy carried out in this region is sometimes called "electronic spectroscopy

Molar absorptivity Molar absorptivity, e=A/cI A= absorbance, c= sample concentration in moles/liter 1=length of light path through the sample in cm 25,000 9 osk mux=222 nm 3 max 222 nm 20,000 15,000 Isoprene 0.4 10,000 C=4·105 moles/liter I= 1 cm 0 5,000 Isoprene in hexane soln 200220240260280300320340 200220240260280300320340 入(nm 入r
Molar absorptivity Molar Absorptivity, e = A/ c l A= absorbance, c = sample concentration in moles/liter l = length of light path through the sample in cm

Molar absoptivities may be very large for strongly absorbing chromophores >10,000)and very small if absorption is weak(10 to 100). The magnitude of e reflects both the size of the chromophore and the probability that light of a given wavelength will be absorbed when it strikes the chromophore a general equation stating this relationship may be written as follows e=0.87*1020R*a (R is the transition probability(o to 1)& a is the chromophore area in cm 兀- orbita C o2 n-orbitals 元*- orbita electron
Molar absoptivitiesmay be very large for strongly absorbing chromophores (>10,000) and very small if absorption is weak (10 to 100). The magnitude of e reflects both the size of the chromophore and the probability that light of a given wavelength will be absorbed when it strikes the chromophore. A general equation stating this relationship may be written as follows: e = 0.87*1020 R * a (R is the transition probability (0 to 1) & a is the chromophore area in cm2 )
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《无机化学》课程教学资源(PPT课件讲稿)第七章 氧化还原反应电化学基础.ppt
- 《分析化学》课程教学资源(参考资料)实验室常用技术参数手册.doc
- 《分析化学》课程教学课件(PPT讲稿)第五章 络合滴定法(3/3).ppt
- 《分析化学》课程教学课件(PPT讲稿)第五章 络合滴定法(2/3).ppt
- 《分析化学》课程教学课件(PPT讲稿)第五章 络合滴定法(1/3).ppt
- 北京大学:《普通化学》课程教学资源(讲义)习题课2-化学热力学.ppt
- 北京大学:《普通化学》课程教学资源(讲义)习题课1-气体,液体,固体.ppt
- 北京大学:《普通化学》课程教学资源(讲义)第一章 绪论.pdf
- 北京大学:《普通化学》课程教学资源(讲义)第十一章 配位化合物.pdf
- 北京大学:《普通化学》课程教学资源(讲义)第十一章 配位化合物.pdf
- 北京大学:《普通化学》课程教学资源(讲义)第三章 化学热力学基础与化学平衡 3.6 Gibbs自由能 3.7 化学反应的限度与化学平衡.pdf
- 北京大学:《普通化学》课程教学资源(讲义)第三章 化学热力学基础与化学平衡 3.5 熵 3.6 Gibbs自由能 3.7 化学反应的限度与化学平衡.pdf
- 北京大学:《普通化学》课程教学资源(讲义)第三章 化学热力学基础与化学平衡 3.3 热化学方程式和热化学定律 3.4 生成焓和键焓 3.5 熵.pdf
- 北京大学:《普通化学》课程教学资源(讲义)第三章 化学热力学基础与化学平衡 3.3 热化学方程式和热化学定律 3.4 生成焓和键焓.pdf
- 北京大学:《普通化学》课程教学资源(讲义)第三章 化学热力学基础与化学平衡 3.1 什么是化学热力学? 3.2 化学热力学常用术语.pdf
- 《电化学分析法教程》第十三章 伏安法与极谱法(Polarography).doc
- 《电化学分析法教程》第十二章 电解分析和库仑分析.doc
- 《电化学分析法教程》第十章 电分析化学引论.doc
- 《仪器与方法验证专著》(英文版) Analytical Method Validation and Instrument Performance veriticatig.pdf
- 《仪器分析》第三章 气相色谱法.ppt
- 《紫外-可见光谱》课程PPT教学课件(讲稿,英文版)Homoannular Heteroannular.ppt
- 《紫外-可见光谱》课程PPT教学课件(讲稿)第二章 紫外光谱基本概念.ppt
- 华南理工大学:《物理化学》课程PPT教学课件(双语版)绪论.ppt
- 华南理工大学:《物理化学》课程PPT教学课件(双语版)课程绪论.ppt
- 华南理工大学:《物理化学》课程PPT教学课件(双语版)第一章 气体的PVT关系.ppt
- 华南理工大学:《物理化学》课程PPT教学课件(双语版)第二章 热力学第一定律及其应用.ppt
- 华南理工大学:《物理化学》课程PPT教学课件(双语版)Chapter 2 热力学第一定律及其应用 The Thermodynamic First Law(上).ppt
- 华南理工大学:《物理化学》课程PPT教学课件(双语版)Chapter 2 热力学第一定律及其应用 The Thermodynamic First Law(下).ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第十二章 羧酸及其衍生物.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第十三章 取代羧酸.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第十四章 含氮化合物.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第十五章 含硫、磷和硅的有机化合物.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第十六章 杂环化合物.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第十七章 周环反应.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第十八章 碳水化合物.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第十九章 氨基酸、多肽、蛋白质和核酸.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第二十章 类脂化合物.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第二十一章 有机合成.ppt
- 中国科学技术大学:《有机化学》课程教学课件(PPT讲稿)第十一章 醛、酮.ppt
- 韩山师范学院:《大学仪器分析》课程教学资源(PPT课件讲稿)第二章 光分析导论 第二节 原子光谱与分子光谱 atom spectrum and molecular spectrum.ppt