同济大学:《高等数学》课程教学资源(讲义)第三单元 格林公式

第三单元 格林公式
第三单元 格林公式

本单元的内容要点 本单元要点: 1格林公式; 2.曲线积分与路径无关性; 3全微分求积;
一、本单元的内容要点 本单元要点: 1.格林公式; 2.曲线积分与路径无关性; 3.全微分求积;

本单元的教学要求 掌握格林公式的意义,计算方法及一些相关问题
二、本单元的教学要求 掌握格林公式的意义,计算方法及一些相关问题

本单元教学的重点与难点 本单元的重点是格林公式的使用。难点是如何对非封 闭的曲线如何正确的使用格林公式,以及区域中有奇点 时的积分。 教学时数:2课时
三、本单元教学的重点与难点 本单元的重点是格林公式的使用。难点是如何对非封 闭的曲线如何正确的使用格林公式,以及区域中有奇点 时的积分。 教学时数: 2课时

格林公式 格林公式建立了曲线积分与二重积分的关系。通过 格林公式,将一个比较复杂的曲线积分转化为一个相 ⊙对简单的二重积分。在使用格林公式时尤为要注意使 用格林公式的条件
格林公式 格林公式建立了曲线积分与二重积分的关系。通过 格林公式,将一个比较复杂的曲线积分转化为一个相 对简单的二重积分。在使用格林公式时尤为要注意使 用格林公式的条件

1单(复连通区域及正向边界 设D为一平面区域,如果任一条闭曲线所包围的有界 区域都属于D,则称D是单连通区域。 e由定义可以看到,所谓单连通区域是一个没有“洞”的 区域 例区城D={(x,)2+y2s为单连通区域,而 D={(xy)≤x+y2≤4是复连通区域
1.单(复)连通区域及正向边界 设D为一平面区域,如果任一条闭曲线所包围的有界 区域都属于D,则称D是单连通区域。 由定义可以看到,所谓单连通区域是一个没有“洞”的 区域。 例 区域 为单连通区域,而 是复连通区域。 {( ) } 2 2 D x = , 1 y x + ≤ y {( ) } 2 2 D x = ≤ , 1 y x + y ≤ 4

D=((x, y)x'+ys11 单连通 复连通
x y o x y o {( ) } 2 2 D x = , 1 y x + ≤ y D 单连通 复连通

设平面区域D,规定D的边界曲线D的正向如下 当人站立于xoy平面上,并沿D的这一方向朝前行 进时,区域D的边界总位于D的左侧。并以OD表示 D的正向边界,而以D表示反向边界 D D 正向边界aD 反向边界D
设平面区域D,规定D的边界曲线∂D的正向如下: 当人站立于xoy 平面上,并沿∂D的这一方向朝前行 进时,区域D的边界总位于D的左侧。并以∂D+表示 D的正向边界,而以∂D-表示反向边界。 x y o 正向边界∂D+ D x y o D 反向边界∂D-

42格林公式 定理1设D是xoy平面上的有界闭区域,其边界曲线D 由有限条光滑或分段光滑的曲线组成,如果函数P(x,y Q(x,y)在D上有一阶连续偏导,则 oo aP 体b=P(x,y+Cxy)b 注:公式(1)即称为格林公式
2.格林公式 定理1 设D是xoy平面上的有界闭区域,其边界曲线∂D 由有限条光滑或分段光滑的曲线组成,如果函数P(x, y), Q(x, y)在D上有一阶连续偏导,则 ( , ) ( , ) D D Q P dxdy P x y dx Q x y dy x y + ∂ ⎛ ⎞ ∂ ∂ ⎜ ⎟ − = + ⎝ ⎠ ∂ ∂ ∫∫ v∫ ( 1 ) 注:公式(1)即称为格林公式

证(1)首先假设D是X和Y型区域,D可以表示为 D={(x,y)y(x)sy≤y(x)a≤xsb} 如图所示,设D的边界由L1,L2L3,L组成,其中L1,L2为 曲线弧,L3,L为直线段,Ly=y(x)x:a->b),则 dP= dx["(r)oP y =y24x) PIx,3(x)1-P[x, y,(x)])dx D b
证 (1)首先假设D是X和Y型区域,D可以表示为 D = ≤ {( x, ( y y ) 1 2 x) y y ≤ (x a ), ≤ x ≤ b}, 如图所示,设D的边界由L1,L2,L3,L4组成,其中L1,L2为 曲线弧,L3,L4为直线段,L1:y=y(x)(x:a→b),则 x y o D y=y2(x) y=y1(x) a b { } [ ] [ ] 2 1 ( ) ( ) 2 1 , ( ) , ( ) , b y x a y x D b a P P d dx dy y y P x y x P x y x dx σ ∂ ∂ = ∂ ∂ = − ∫∫ ∫ ∫ ∫
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《高等数学》课程教学资源(讲义)第二单元 曲面积分.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第一单元 曲线积分.pdf
- 中南大学:《运筹学》课程试题及参考答案.doc
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第十六章 Markov过程.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第十五章 预测.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第十四章 效用分析.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第十三章 决策分析.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第十二章 排队模型.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第十一章 计算机模拟.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第十章 库存模型.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第九章 统筹技术.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第八章 网络模型.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第七章 整数规划(I.P.).ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第六章 运输、指派和转运问题.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第五章 L.P.单纯形法.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第四章 L.P.应用.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第三章 线性规划敏感性分析和计算机解法.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第二章 线性规划.ppt
- 上海对外贸易学院:《运筹学》课程教学资源(PPT课件讲稿)第一章 绪论.ppt
- 陕西科技大学:《线性代数》课程教学资源(作业)第五次作业.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第一单元 数项级数.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第二单元 幂级数.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第一单元 映射与函数.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第二单元 极限.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第三单元 极限运算法则.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第四单元 连续函数.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第一单元 微分中值定理.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第二单元 洛必达法则与泰勒公式.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第三单元 函数的单调性与曲线的凹凸性.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第四单元 函数的极值、最大值与最小值.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第一单元 不定积分的概念与性质 基本积分法.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第二单元 有理函数等一些特殊类型函数的积分.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第五章 定积分.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第一单元 向量代数.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第二单元 曲面与曲线.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第三单元 平面与直线.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第一单元 重积分的概念和性质.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第二单元 二重积分的计算.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第三单元 三重积分.pdf
- 同济大学:《高等数学》课程教学资源(讲义)第二单元 重积分的应用.pdf