《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 12

LANDSCAPE ECOLOGY SREM 3011 LECTURE 12 Dr Brendan Mackey Department of Geography The Australian National University
LANDSCAPE ECOLOGY SREM 3011 LECTURE 12 Dr Brendan Mackey Department of Geography The Australian National University

Conceptual framework: model response of ecological criteria' phenomena to the primary environmental regimes At a meso scale, climatic variables based on long term, mean monthly rainfall, maximum& minimum temperatures provide fundamental inputs to light, heat, moisture regimes Nutrient regime?? Discuss next week Next few lectures: role of topography in defining PERs at a topo scale moisture regime radiation regime climate(meso) vs topo-scaled topographic effects
• Conceptual framework : model response of ecological ‘criteria’/phenomena to the primary environmental regimes • At a meso scale, climatic variables based on long term, mean monthly rainfall, maximum & minimum temperatures provide fundamental inputs to light, heat, moisture regimes • Nutrient regime?? Discuss next week Next few lectures: - role of topography in defining PERs at a topo scale moisture regime radiation regime - climate (meso) vs topo-scaled topographic effects

Next 2 weeks lectures A. Topo-scaled modelling of PERs B. Other statistical models for analyzing site data C. Ecological classification regionalization
Next 2 weeks lectures: A. Topo-scaled modelling of PERs B. Other statistical models for analyzing site data C. Ecological classification & regionalization

If species distributions are a function of the moisture, radiation thermal and nutrient regimes then the more accurately we'track,them(ie the PERs), the better we can ' track'plant and animal response Moisture regime is only coarsely approximated by precipitation precipitation is a useful index of moisture regime at regional scales, but limited/problematic at both continental and smaller scales Problem: estimate moisture regime across entire landscape, factoring in (1)evaporation topography and soil profile how to generate gridded estimates in an analogous manner to our climate models?
• If species distributions are a function of the moisture, radiation, thermal and nutrient regimes, then the more accurately we ‘track’ them (ie. the PERs), the better we can ‘track’ plant and animal response • Moisture regime is only coarsely approximated by precipitation - precipitation is a useful index of moisture regime at regional scales, but limited/problematic at both continental and smaller scales • Problem: estimate moisture regime across entire landscape, factoring in (1) evaporation (2) topography and (3) soil profile : how to generate gridded estimates in an analogous manner to our climate models?

Mean annual precipitation(mm) within a region, evapo -'constant P-E& available moisture (AM) As E>P must to have same amt of am Therefore important for continent. wide analysis
Mean annual precipitation (mm) • within a region, evapo ~ ‘constant’ • P- E& available moisture (AM) • As E>, P must > to have same amt of AM Therefore important for continentwide analysis

Average evaporation from Australian Standard Tanks, in units of mm/year EVAPORATION 和系
Average evaporation from Australian Standard Tanks, in units of mm/year

Potential evaporation is a function of: 1 Solar radiation 2. Temperature(surface 3. Atmospheric moisture 4. Turbulencelaerodynamic roughness US Weather Bureau Class A evaporation pans with screen in the foreground and without screen in the background
Potential evaporation is a function of: 1. Solar radiation4 2. Temperature (surface) 3. Atmospheric moisture 4. Turbulence/aerodynamic roughness US Weather Bureau Class A evaporation pans with screen in the foreground and without screen in the background

ANUSPLIN surfaces have been fitted to australian network of 'class a pan data thereby enabling gridded estimates of potential evaporation to be generated. Therefore, can calculate(P-Eor(P: 3) But PE*actual evaporation(AE) AE is limited by soil moisture Therefore need to factor in soil water availability and calculate a moisture index as a function of 1. Precipitation 2. PE 3. Soil water status
• ANUSPLIN surfaces have been fitted to Australian network of ‘class A’ pan data thereby enabling gridded estimates of potential evaporation to be generated. Therefore, can calculate (P-E) or (P:E) • But PE actual evaporation (AE) • AE is limited by soil moisture Therefore need to factor in soil water availability and calculate a moisture index as a function of 1. Precipitation 2. P.E. 3. Soil water status

So-called water-balance can be calculated on a daily, weekly or monthly time step 25mm 50mm 25mm 50mm 25mm 50m 1.0 0.75 0.75 0.5 0.25 0.0 JAN FEB MAR Available water capacity f(soil depth, soil texture) in this example, awc 100mm Moisture index =1 if 'bucket is full 0 if bucket'empty
• So-called water-balance can be calculated on a daily, weekly or monthly time step: • Available water capacity = f (soil depth, soil texture) • in this example, AWC = 100mm • Moisture index = 1 if ‘bucket’ is full = 0 if ‘bucket’ empty 25mm 50mm 25mm 50mm 25mm 50mm 1.0 0.75 0.0 0.75 0.5 0.25 JAN FEB MAR

Can generate prediction of MI at any location at which you know: 1.XYZ Precipitation, potential evaporation 2. Soil depth texture AWc Ultimately, what's important for a plant is not how much rain falls, but how much water is in the soil where its roots are! But how to generate gridded Mi values across entire landscapes? need 'micro scaled soil maps most soil maps do not map profile depth depth more important to AWc calculation than texture
• Can generate prediction of MI at any location at which you know: 1. XYZ Precipitation, potential evaporation 2. Soil depth + texture AWC Ultimately, what’s important for a plant is not how much rain falls, but how much water is in the soil where its roots are! • But how to generate gridded MI values across entire landscapes? - need ‘micro’ scaled soil maps - most soil maps do not map profile depth - depth more important to AWC calculation than texture
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 11.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 10.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 9.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 8.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 7.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 6.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 5.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 4.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 3.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 2.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 1.ppt
- 《电子束脱硫技术应用及分析》讲义.ppt
- 《污水处理工艺及工程方案设计》参考资料(目录).pdf
- 《污水处理工艺及工程方案设计》参考资料(正文,共十六章).pdf
- 《酵母菌在含油废水处理中的应用》讲义.ppt
- 《态环境与影响评估学》电子课件.ppt
- 《水污染控制》PPT教学课件:第三章 废水的化学处理 Chemical Treatment 3.3 氯氧化 disinfection.ppt
- 《水污染控制》PPT教学课件:二氧化氯消毒剂知识.ppt
- 《水污染控制》PPT教学课件:第四章 生物处理法 4.1 活性污泥法 Activated Sludge Processes.ppt
- 《水污染控制》PPT教学课件:第三章 废水的化学处理 Chemical Treatment 3.2 混凝 Coagulation.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 13.ppt
- 《景观生态学》(英文版) LANDSCAPE ECOLOGY SREM 3011 LECTURE 14.ppt
- 《水环境质量评价与影响预测》 讲义.doc
- 《水污染控制工程》课程教学资源(PPT课件)第一章 绪言 Introduction.ppt
- 《水污染控制工程》课程教学资源(PPT课件)第二章 废水的预处理和初级处理 Preliminary Treatment.ppt
- 《水污染控制工程》课程教学资源(PPT课件)第二篇 不溶态污染物的分离技术 第二章 重力沉降法.ppt
- 《水污染控制工程》课程教学资源(PPT课件)第四章 粒状介质过滤 Granular Medium Filtration.ppt
- 《水污染控制工程》课程教学资源(PPT课件)第五章 混凝 Coagulation.ppt
- 《废水的深度厌氧处理技术》讲义.ppt
- 《水污染及其治理》讲义PPT电子课件.ppt
- 《空调设备消声设计》参考资料(共七章).pdf
- 清华大学:《环境保护与可持续发展》课程教学资源(PPT讲稿)第一讲 2005年初关于敬畏自然的争论.ppt
- 清华大学:《环境保护与可持续发展》课程教学资源(PPT讲稿)第二讲 中国的21世纪议程.ppt
- 清华大学:《环境保护与可持续发展》课程教学资源(PPT讲稿)第三讲 可持续发展.ppt
- 清华大学:《环境保护与可持续发展》课程教学资源(PPT讲稿)第四讲 可持续发展在中国.ppt
- 清华大学:《环境保护与可持续发展》课程教学资源(PPT讲稿)第五讲 可持续发展战略的实施途径——循环经济.ppt
- 清华大学:《环境保护与可持续发展》课程教学资源(PPT讲稿)第六讲 可持续发展战略的实施途径.ppt
- 清华大学:《环境保护与可持续发展》课程教学资源(PPT讲稿)第七讲 实施可持续发展的世界动向.ppt
- 清华大学:《环境保护与可持续发展》课程教学资源(PPT讲稿)环境保护与可持续发展复习题.ppt
- 清华大学:《环境保护与可持续发展》课程教学资源(PPT讲稿)第八讲 环境管理的经济手段.ppt