上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 33_Entropy increase principle

上游充通大学 SHANGHAI JIAO TONG UNIVERSITY Engineering Thermodynamics I Lecture 33 Chapter 7 Entropy (Section 7.1) Spring,2017 福 Prof.,Dr.Yonghua HUANG AnM。 http://cc.sjtu.edu.cn/G2S/site/thermo.html 1日G
Engineering Thermodynamics I Lecture 33 Spring, 2017 Prof., Dr. Yonghua HUANG Chapter 7 Entropy (Section 7.1) http://cc.sjtu.edu.cn/G2S/site/thermo.html

Directionality of processes Who determines the direction? Energy balance (1st law)? Entropy balance (2nd law)? HOT ·Together?? COFFEE Heat Spontaneous? 圈上游通大学 Wednesday,April 19,2017 2 SHANGHAI JLAO TONG UNIVERSITY
Wednesday, April 19, 2017 2 Directionality of processes Spontaneous? • Energy balance (1st law) ? • Entropy balance (2nd law)? • Together? Who determines the direction?

Energy and Entropy balance of an isolated system Suppose:all energy mass transfer in the enlarged sys. Enlarged system 7 sys Isolated system Energy balance: AE]isol=0-->△E]system+△E]sur=0 Entropy balance: a-g…的ent- △S]isol= Oisol ≥0 Increase of entropy principle 上游究通大浮 Wednesday,April 19,2017 3 SHANGHAI JIAO TONG UNIVERSITY
Wednesday, April 19, 2017 3 Energy and Entropy balance of an isolated system sys Enlarged system Isolated system Suppose: all energy & mass transfer in the enlarged sys. Energy balance: Entropy balance: ≥0 Increase of entropy principle

Interpreting Increase of entropy principle △S]isol=0isol does not require the entropy change to be positive for both the system and surroundings only that the sum of the changes is positive dictates the direction in which any process can proceed:the direction that causes the total entropy of the system plus surroundings to increase. Any process>equilibrium,Sisol at equilibrium,Sisol =max 上游通大学 Wednesday,April 19,2017 4 SHANGHAI JIAO TONG UNIVERSITY
Wednesday, April 19, 2017 4 Interpreting Increase of entropy principle • does not require the entropy change to be positive for both the system and surroundings • only that the sum of the changes is positive • dictates the direction in which any process can proceed: the direction that causes the total entropy of the system plus surroundings to increase. • Any processequilibrium, Sisol ↑; at equilibrium, Sisol = max

Example 33.1 Use the increase of entropy principle to demonstrate the following engine is not possible: it absorbs heat 1000kJ from a 167 C hot reservoir,and reject heat 568 kJ to a cold reservoir at 7'C.The cycle net work is 432 kJ. Solution:take the engine,hot reservoir,cold reservoir as a closed, adiabatic system.For a cycle, -1000kJ =-2.272kJ/K (273.15+167)K 568kJ =2.027kJ/K (273.15+7)K =0 reversible? Asso=-2.272kJ/K+2.027kJ/K=-0.245kJ/K<0 So,the engine is not possible to work 上游充通大学 Wednesday,April 19,2017 5 SHANGHAI JLAO TONG UNIVERSITY
Wednesday, April 19, 2017 5 Use the increase of entropy principle to demonstrate the following engine is not possible: it absorbs heat 1000kJ from a 167 ℃ hot reservoir, and reject heat 568 kJ to a cold reservoir at 7℃. The cycle net work is 432 kJ. hot res h b,rev 1 000 kJ ( ) 2.272 kJ/K (273.15 167) K Q s T So, the engine is not possible to work cold res b,rev 568 kJ ( ) 2.027 kJ/K (273.15 7) K Qc s T engine s 0 iso s 2.272 kJ/K 2.027 kJ/K 0.245 kJ/K 0 Solution: take the engine, hot reservoir, cold reservoir as a closed, adiabatic system. For a cycle, Example 33.1 ? reversible?

Example 33.2 Known:metal bar immersing in a water tank System boundary Find:(a)final equilibrium temperature (b)entropy produced insulated Metal bar: Water: Tmi=1200°K Twi=300K Cm=0.42kJ/kg·K Cw=4.2kJ/kg·K Assumption: mm =0.3 kg mw =9 kg 1. Closed system 2. No heat and work>isolated system 3. △PE,△KE neglected 4. Metal bar,water both incompressible 上游充通大学 Wednesday,April 19,2017 6 SHANGHAI JLAO TONG UNIVERSITY
Wednesday, April 19, 2017 6 Example 33.2 Known: metal bar immersing in a water tank insulated Find: (a) final equilibrium temperature (b) entropy produced Assumption: 1. Closed system 2. No heat and work isolated system 3. ∆PE, ∆KE neglected 4. Metal bar, water both incompressible

Solution System boundary Energy balance: AKE APE AU=8-W Metal bar: Water: Tmi =1200K Twi =300K △water+△metal=0 Cm =0.42 kJ/kg-K Cw =4.2 kJ/kg.K mm =0.3 kg mw =9 kg mwCw(Tr-Twi)+mmCm(Tr-Tmi)=O (T:final equilibrium temperature) mw(Cw/Cm)Twi mmTmi T= mw(Cw/cm)+mm _(9kg10)(300K)+(0.3kg1200°K) (9kg10)+(0.3kg) =303K 上游充通大 Wednesday,April 19,2017 7 SHANGHAI JLAO TONG UNIVERSITY
Wednesday, April 19, 2017 7 Solution Energy balance: (Tf : final equilibrium temperature)

Solution cont. System boundary Entropy balance: (isolated system>no entropy transfer) s=) Metal bar: Water: Tmi =1200K Twi=300K cm=0.42kJkg·K Cw =4.2 kJ/kg.K mm =0.3 kg mw=9 kg "disorder" For incompressible substances: mc nsi Tr +mmCm In Entropy change of metal x)+03e0ek) kJ 303 k 303 =(9kg)(42 Entropy change of waterT- 1200 k] -0.173 K 0.2027kJ/K 上游充通大 Wednesday,April 19,2017 8 SHANGHAI JLAO TONG UNIVERSITY
Wednesday, April 19, 2017 8 Solution cont. Entropy balance: (isolated system no entropy transfer) For incompressible substances: Entropy change of water↑ Entropy change of metal ↓ “disorder

Example 33.3 Chemical problem Chemical reaction:1 mol CO and 0.5 mol Oz at p=1 atm,=25 C,final product 1 mol CO2.measured rejected heat 283 190 J,no work output. Assuming the molar basis entropy of CO,O2,and CO2 are 197.67 J/(mol-K), 205.167 J/(mol-K),and 213.82 J/(mol-K)at (p.t),respectively. Question:are these data correct/reliable?(surrounding to=25 C) Solution:Take CO,O2,COz and the surrounding as system C0+02=C02 Isolated system A心-Su-So+o, =1mol×213.82J/mol.K)-[1mol×197.67J/(mol·K) 283190J +0.5mol×205.16J/(mol·K)]+ =863.4J/K>0 (273+25)K So,not violate the 2nd law.Increase of entropy principle also applies to chemical reaction. 上游充通大学 Wednesday,April 19,2017 9 SHANGHAI JLAO TONG UNIVERSITY
Wednesday, April 19, 2017 9 Chemical reaction: 1 mol CO and 0.5 mol O2 at p = 1 atm, t= 25 ℃, final product 1 mol CO2 . measured rejected heat 283 190 J, no work output. Assuming the molar basis entropy of CO, O2 , and CO2 are 197.67 J/(mol·K), 205.167 J/(mol·K) , and 213.82 J/(mol·K) at (p, t), respectively. Question: are these data correct/reliable?(surrounding t0= 25 ℃) Solution: 2 2 1 CO+ O =CO 2 Take CO, O2 , CO2 and the surrounding as system 2 2 iso CO CO O 0 1 2 S S S S S 1 mol 213.82 J/(mol K) [1 mol 197.67 J/(mol K) 283 190 J 0.5 mol 205.16 J/(mol K)] 863.4 J/K 0 (273 25) K So, not violate the 2nd law. Increase of entropy principle also applies to chemical reaction. Example 33.3 Chemical problem Isolated system

Homework: Problems:7-25,7-27 上游充通大学 Wednesday,April 19,2017 10 SHANGHAI JLAO TONG UNIVERSITY
Wednesday, April 19, 2017 10 Homework: Problems:7-25, 7-27
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 32_Internally reversible processes, Closed system entropy balance.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 31_Retrieve entropy data.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 30_Clausius inequality and Entropy.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 29_Carnot Cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 27-28_Applying 2nd law to thermodynamic cycles, Maximum performance.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 23-24_Introducing 2nd law, concept of irreversibilities.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 22_Transient analysis of Energy.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 20-21_Illustrations_3 Heat exchangers, throttling devices, System integration.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 19_Illustrations_2 Compressors, pumps.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 18_Illustrations_1 Nozzles, diffusers, turbines.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 17_Control volume analysis - energy conservation.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 16_Control volume analysis - mass conservation.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 15_Polytropic process.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第五章 对流传热的理论基础 5-1 对流传热概说 5-2 对流换热问题的数学描写.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第四章 导热问题的数值解法 §4-4 非稳态导热问题的数值解法.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第三章 非稳态导热 § 3-3 典型一维物体非稳态导热的分析解 §3-4 半无限大物体的非稳态导热 第四章 导热问题的数值解法 4-1 导热问题数值求解的基本思想 4-2 内节点离散方程的建立方法 4-3 边界结点离散方程的建立及代数方程的求解.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第二章 导热基本定律及稳态导热 2-5 具有内热源的一维导热问题 2-6 多维稳态导热的求解 第三章 非稳态导热 3-1 非稳态导热的基本概念 3-2 零维问题的分析法——集中参数法.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第二章 导热基本定律及稳态导热 2-5 具有内热源的一维导热问题 2-6 多维稳态导热的求解 第三章 非稳态导热 3-1 非稳态导热的基本概念 3-2 零维问题的分析法——集中参数法.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第二章 导热基本定律及稳态导热 §2-3 典型一维稳态导热问题的分析解 2-4 通过肋片的导热.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第二章 导热基本定律及稳态导热 2-1 导热基本定律 2-2 导热问题的数学描写.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 34_Entropy balance to open systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 35_Isentropic processes, Isentropic efficiencies.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 36_Heat transfer and Work of internal reversible, ss flow.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 37-38_Concept of exergy and apply to CM&CV systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 39-40_vapor power cycles.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 43_superheat and reaheat.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 44_Vapor-compression refrigeration, Heat pump systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 45_Air standard cycle, internal combustion engines, Otto cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 46_Diesel cycle and dual cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 47_Compressor, compression with intercooling.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 48_Review and Final Exam.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)中意楼位置.pptx
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 01-02_Course Introduction.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 03-04_Concepts.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 05-06_Energy, work, heat transfer.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 07-08_Energy balance for close system and cycles.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 09-10_Substance, property and phase.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 11_Retrieving pvt properties.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 12_Evaluating u, h, cp, cv properties.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 13_Equation of state and ideal gas model.pdf