上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 37-38_Concept of exergy and apply to CM&CV systems

上游充通大¥ SHANGHAI JIAO TONG UNIVERSITY Engineering Thermodynamics I Lecture 37-38 Chapter 8 Exergy-A measure of work potential Spring,2017 Prof.,Dr.Yonghua HUANG 强 MAALLMMMMAR http://cc.sjtu.edu.cn/G2S/site/thermo.html 1日G
Engineering Thermodynamics I Lecture 37-38 Spring, 2017 Prof., Dr. Yonghua HUANG Chapter 8 Exergy – A measure of work potential http://cc.sjtu.edu.cn/G2S/site/thermo.html

Previous:energy analysis All considered the isentropic process as the goal to strive for. Maximize isentropic efficiency This approach is short sighted for three reasons: 1.It ignores processes where heat transfer is present.(The majority of all practical processes.) 2.It assumes that reversibility can be obtained. 3.It assumes that the exit state of a device can "float",i.e.,cases where the exit pressure is fixed,but the exit temperature is allowed to fall below the temperature of the surroundings. >Need different approach for thermodynamic analysis: Exergy (Availability)Analysis 上游气通大 Monday,April 24,2017 2 SHANGHAI JIAO TONG UNIVERSITY
Monday, April 24, 2017 2 Previous: energy analysis All considered the isentropic process as the goal to strive for. Maximize isentropic efficiency This approach is short sighted for three reasons: 1. It ignores processes where heat transfer is present.(The majority of all practical processes.) 2. It assumes that reversibility can be obtained. 3. It assumes that the exit state of a device can “float”, i.e., cases where the exit pressure is fixed, but the exit temperature is allowed to fall below the temperature of the surroundings. Need different approach for thermodynamic analysis: Exergy (Availability) Analysis

Deady state Hot ◆Heat coffee 10m/s Heat engine Wnet.out Wmax rig Low-temperature Sink Has a potential to do work Has a potential to do work Has a potential to do work Systems from State A>State B(equilibrium):work A system that is in equilibrium with its environment is said to Air 25C 101 kPa T0=25C be at the dead state. V=0 Po=101 kPa z=0 Not able to do any work Monday,April 24,2017 3 SHANGHAI JIAO TONG UNIVERSITY
Monday, April 24, 2017 3 Deady state A system that is in equilibrium with its environment is said to be at the dead state. Has a potential to do work Has a potential to do work Has a potential to do work Not able to do any work Systems from State A State B (equilibrium): work

Defining exergy Environment To:Po Notes: CM2 CM1 》Wuse=net useful work of combined I Closed I system(CM1)! 1 System use 》The goal is to maximize Wuse! Exergy Availability Maximum theoretical work output that could be done by a system if it was to come into equilibrium with its environment! 上游充通大 Monday,April 24,2017 4 SHANGHAI JIAO TONG UNIVERSITY
Monday, April 24, 2017 4 Defining exergy Exergy/Availability = Maximum theoretical work output that could be done by a system if it was to come into equilibrium with its environment! Notes: » Wuse = net useful work of combined system (CM1)! » The goal is to maximize Wuse! Closed System Environment @ To ,po Qi CM2 CM1 Wi Wuse

Exergy Analysis for Closed Systems © 1st law for CM1 (finite time process):---- Environment To.Po AECMI =QCMI -Wuse Closed System Wuse Assumptions Maximize Wuse>final state of CM1 is the dead state e Sole effect is work out>QcM1=0 → Wuse.max =-AECMI=-(AUCMI +AKECMI +APECMI) =-(AUcM2+AKECMa2+APECM22+AU。+AKE。+PEe) 上游气通大粤 Monday,April 24,2017 5 SHANGHAI JLAO TONG UNIVERSITY
Monday, April 24, 2017 5 Exergy Analysis for Closed Systems 1st law for CM1 (finite time process): Assumptions • Maximize Wuse final state of CM1 is the dead state • Sole effect is work out QCM1 = 0 E Q W CM1 CM1 use use,max CM1 CM1 CM1 CM1 CM2 CM2 CM2 e e W E ( U KE PE ) ( U KE PE U KE PEe ) Closed System Environment @ To ,po Qi CM2 CM1 Wi Wuse

Continue Exergy Analysis for Closed Systems 77? ?? Wuse.max =-(AUCM2 +AKECM2 +APECM2 +AU) The changes in internal energy of the system(CM2)and the environment can be calculated by: .Environment ToPo AUcM2=(U。-U)cM2 I CM2 Closed AU.Q。-W,=IAS.-P,AV System Constant for environment △KEe=0,△PEe=0 Substitution into the equation for useful work leads to: Wuse.masx =(U-U)CM2 +AKECM2+APECM2 -TASe+PoAVe 27 上游通大学 Monday,April 24,2017 6 SHANGHAI JIAO TONG UNIVERSITY
Monday, April 24, 2017 6 Continue Exergy Analysis for Closed Systems The changes in internal energy of the system (CM2) and the environment can be calculated by: Substitution into the equation for useful work leads to: CM2 o CM2 e e e o e o e U (U U) U Q W T S p V Constant for environment W (U U ) KE PE T S p V use,max o CM2 CM2 CM2 o e o e Closed System Environment @ To ,po Qi CM2 CM1 Wi Wuse W ( U KE PE U ) use,max CM2 CM2 CM2 e ?? ?? ?? ?? ΔKEe = 0, ΔPEe=0

Continue Exergy Analysis for Closed Systems Wuse.max =(U-U)CM2 +AKECM2 +APECM2 -TAS +PoAVe Note: ?? △V。=-AVcM2=-(V。-V)cM2=(V-V)cM2 and △SCMI=△ScM2+ASe →ASe=AScMI-AScM2=AScM1-(S。-S)CM2 =△SCM1+(S-S)cM2 Then,substituting△V。and△S.into the equation for useful work: Wuse.max=(U-U)CM2 +AKECM2+APECM2 Po(V-Vo)CM2-To(S-So)CM2 ToASCMI 上游充通大学 Monday,April 24,2017 7 SHANGHAI JLAO TONG UNIVERSITY
Monday, April 24, 2017 7 Continue Exergy Analysis for Closed Systems Note: ΔVe = – ΔVCM2 = – (Vo – V)CM2 = (V – Vo )CM2 and ΔSCM1 = ΔSCM2 + ΔSe ΔSe = ΔSCM1 – ΔSCM2 = ΔSCM1 – (So – S)CM2 = ΔSCM1 + (S – So )CM2 Then, substituting ΔVe and ΔSe into the equation for useful work: Wuse,max = (U – Uo )CM2 +ΔKECM2 +ΔPECM2 + po (V – Vo )CM2 – To (S – So )CM2 + To ΔSCM1 W (U U ) KE PE T S p V use,max o CM2 CM2 CM2 o e o e ?? ??

Continue Exergy Analysis for Closed Systems In order to maximize Wuse,we assume a reversible process for CM1 and thus,AScMI=0! In addition,we will drop the subscript CM2: →Wrev.use,max=U-U。+KE+PE+p(V-V,)-T(S-S,) Definition of exergy (availability)for closed system >①=Wrevuse.max is a property! >=0 Φ=U-U。+p(V-Vo)-T,(S-So)+KE+PE in specific terms = u*g-[u--片T6-】 Available Energy in Env. Min.work Min.heat transfer Total Energy on or by to or from Energy Environment Environment Can be Converted to work Unavailable energy,Anergy cannot be converted to work Note:available unavailable constant! 上游充通大粤 Monday,April 24,2017 8 SHANGHAI JIAO TONG UNIVERSITY
Monday, April 24, 2017 8 Continue Exergy Analysis for Closed Systems In order to maximize Wuse, we assume a reversible process for CM1 and thus, ΔSCM1 = 0! In addition, we will drop the subscript CM2: Wrev,use,max = U – Uo + KE+PE+po (V – Vo ) – To (S – So ) Definition of exergy (availability) for closed system : F = Wrev,use,max F = U – Uo +po (V – Vo ) – To (S – So ) + KE + PE is a property! >=0 2 o o o o o v u gz u p v v T s s 2 Note: available + unavailable = constant! Available Energy Min. work on or by Environment Min. heat transfer to or from Environment Total Energy = - Can be Converted to work Unavailable energy, Anergy cannot be converted to work in specific terms Energy in Env

Evaluating Exergy change for closed Systems oDefinition of exergy: Φ=U-U。+p(V-Vo)-T(S-S) ↓ ●Change in exergy: △Φ=Φ2-Φ1= (U2-Ui)+P(V,-V)-T(S2-S) Availability transfered Availability destroyed as work and heat 上游充通大学 Monday,April 24,2017 9 SHANGHAI JLAO TONG UNIVERSITY
Monday, April 24, 2017 9 Evaluating Exergy change for closed Systems Change in exergy: 2 1 2 1 o 2 1 o 2 1 Availability transfered Availability destroyed as work and heat F F F U U p V V T S S F = U – Uo + po (V – Vo ) – To (S – So ) Definition of exergy:

Example 37.1: Air CM for your interest一l小 Given: V1=0.4m3 入Rigid tank Environment P1=10 bars T @To=300K,and p.=1 bar =400K Find:Exergy of the air ● Assumptions:》△KE=△PE=0》Air is ideal gas》Closed system Solution: Φarl=mar(u1-uo)+P(y1-V。)-mrT。(s,-s。) 》Mass of air: PV 10.105N/20.4m31J m mair =3.484kg 287 K400K INm From air tables:u=uair (T]=400K)=286.16 kJ/kg u。=uar(T。=300K)=214.07kJ/kg 上游通大学 Monday,April 24,2017 10 SHANGHAI JLAO TONG UNIVERSITY
Monday, April 24, 2017 10 Given: Find: Exergy of the air Assumptions: Air V1 = 0.4 m3 p1 = 10 bars T1 = 400 K CM Rigid tank Environment @ To = 300K, and po= 1 bar Example 37.1: for your interest » ΔKE = ΔPE = 0 » Air is ideal gas » Closed system Solution: » Mass of air: » From air tables: F air,1 o 1 o m u u air 1 o po V T 1 o V s s mair 2 5 3 1 1 air 1 N m J kg K 10 10 0.4m 1J p V m 3.484kg RT 287 400K 1Nm 1 air 1 o air o u u T 400K 286.16 kJ / kg u u T 300K 214.07 kJ / kg
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 36_Heat transfer and Work of internal reversible, ss flow.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 35_Isentropic processes, Isentropic efficiencies.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 34_Entropy balance to open systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 33_Entropy increase principle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 32_Internally reversible processes, Closed system entropy balance.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 31_Retrieve entropy data.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 30_Clausius inequality and Entropy.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 29_Carnot Cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 27-28_Applying 2nd law to thermodynamic cycles, Maximum performance.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 23-24_Introducing 2nd law, concept of irreversibilities.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 22_Transient analysis of Energy.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 20-21_Illustrations_3 Heat exchangers, throttling devices, System integration.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 19_Illustrations_2 Compressors, pumps.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 18_Illustrations_1 Nozzles, diffusers, turbines.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 17_Control volume analysis - energy conservation.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 16_Control volume analysis - mass conservation.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 15_Polytropic process.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第五章 对流传热的理论基础 5-1 对流传热概说 5-2 对流换热问题的数学描写.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第四章 导热问题的数值解法 §4-4 非稳态导热问题的数值解法.pdf
- 上海交通大学:《传热学》课程教学资源(课件讲稿)第三章 非稳态导热 § 3-3 典型一维物体非稳态导热的分析解 §3-4 半无限大物体的非稳态导热 第四章 导热问题的数值解法 4-1 导热问题数值求解的基本思想 4-2 内节点离散方程的建立方法 4-3 边界结点离散方程的建立及代数方程的求解.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 39-40_vapor power cycles.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 43_superheat and reaheat.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 44_Vapor-compression refrigeration, Heat pump systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 45_Air standard cycle, internal combustion engines, Otto cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 46_Diesel cycle and dual cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 47_Compressor, compression with intercooling.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 48_Review and Final Exam.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)中意楼位置.pptx
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 01-02_Course Introduction.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 03-04_Concepts.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 05-06_Energy, work, heat transfer.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 07-08_Energy balance for close system and cycles.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 09-10_Substance, property and phase.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 11_Retrieving pvt properties.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 12_Evaluating u, h, cp, cv properties.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 13_Equation of state and ideal gas model.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 14_cv, cp, Δu, Δh of ideal gas and applied to close system.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 15_Polytropic process.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 16_Control volume analysis - mass conservation.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 17_Control volume analysis - energy conservation.pdf