《欧拉常数》(英文版)阅读材料——欧拉常数

ON EULER'S CONSTANT -CALCULATING SUMS BY INTEGRALS LI YINGYING Euler's constant is defined as y= lim Dn, (1) n→∞ where Dn=∑-log(n+1)(n∈n) (2) Write =y-Dn. (3) R.M. Young [1] gave an estimate of Tn: 1 1 2(n+1) -<< 2n (4 D.W. DeTemple [2] considered n k=1 instead of Dn and showed 71 1 960(n+1)4-Dn+ 24n+ An earlier discussion on Dn can be found in Rippon 3]. Furthermore, DeTemple and Wang [4] established In this article we give an exact expansion of using totally elementary method from which asymptotic estimates for Tn are derived. Our method is to calculate sums by integrals. Rewrite Dn a n as Dn= tdt. k(k+t) (*) Key words and phrases. Euler constant, sums, integrals. Mathematics Subject Classification 2000, 40A05 The project was supported by a grant from the Education Ministry of China Typeset by AMS-TEX
ON EULER’S CONSTANT —CALCULATING SUMS BY INTEGRALS Li Yingying Euler’s constant is defined as γ = limn→∞ Dn, (1) where Dn = Xn k=1 1 k − log(n + 1) (n ∈ N). (2) Write rn = γ − Dn. (3) R.M. Young [1] gave an estimate of rn: 1 2(n + 1) < rn < 1 2n . (4) D.W. DeTemple [2] considered D˜ n := Xn k=1 1 k − log ³ n + 1 2 ´ instead of Dn and showed 7 960 · 1 (n + 1)4 < γ − D˜ n + 1 24³ n + 1 2 ´2 < 7 960n4 , An earlier discussion on Dn can be found in Rippon [3]. Furthermore, DeTemple and Wang [4] established an estimate for rn with arbitrary n where Bernoulli’s numbers are involved. In this article we give an exact expansion of rn using totally elementary method from which asymptotic estimates for rn are derived. Our method is to calculate sums by integrals. Rewrite Dn as Dn = Xn k=1 Ã 1 k − Z k+1 k 1 x dx! = Xn k=1 Z 1 0 t k(k + t) dt. (∗) Key words and phrases. Euler constant, sums, integrals. Mathematics Subject Classification 2000, 40A05 The project was supported by a grant from the Education Ministry of China Typeset by AMS-TEX 1

LI YINGYING In= ∑、/(a dt+ k=n+1 t)k(k+1) k=n+1A(k+1) t(1-t) k=n+ k(k+1)(k+t Then rn=ri(n)+ n+1 k(k+1)(k+t) 1 1 t(1-t) k(k+1)(k+t)k(k+1)(k+2) t(1-t) k(k+1)(k+2) t(1-t)(2-t) k(k+1)(k+2)(k+t) 2 ta-ddt(a k=n+ k(k+1)(k+1)(k+2) dt+ k(k+1)(k+ + n+1)(n+2) Let r2(n)=∑ t(1-t)(2-t) k(k+1)(k+2)(k+ (7) n=r2(n)+a1 n+1(n+1)(n+2) Define for n∈N,m≥2, rm(m)=∑ t(1-t)(2-t)…(m-t) k(k+1)(k+2)…(k+m)(k+t) dt, am t(1-t)…(m-1-t)dt.(9)
2 LI YINGYING From (∗) we obtain rn = X∞ k=n+1 Z 1 0 t k(k + t) dt = X∞ k=n+1 Z 1 0 t µ 1 k(k + t) − 1 k(k + 1)¶ dt + Z 1 0 tdt X∞ k=n+1 1 k(k + 1) = X∞ k=n+1 Z 1 0 t(1 − t) k(k + 1)(k + t) dt + 1 n + 1 Z 1 0 tdt. Write r1(n) = X∞ k=n+1 Z 1 0 t(1 − t) k(k + 1)(k + t) dt, a1 = Z 1 0 tdt. (5) Then rn = r1(n) + a1 n + 1 . (6) Moreover, r1(n) = X∞ k=n+1 Z 1 0 t(1 − t) k(k + 1)(k + t) dt = X∞ k=n+1 Z 1 0 t(1 − t) µ 1 k(k + 1)(k + t) − 1 k(k + 1)(k + 2)¶ dt + X∞ k=n+1 Z 1 0 t(1 − t) k(k + 1)(k + 2)dt = X∞ k=n+1 Z 1 0 t(1 − t)(2 − t) k(k + 1)(k + 2)(k + t) dt + X∞ k=n+1 1 2 Z 1 0 t(1 − t) dt µ 1 k(k + 1) − 1 (k + 1)(k + 2)¶ = X∞ k=n+1 Z 1 0 t(1 − t)(2 − t) k(k + 1)(k + 2)(k + t) dt + 1 2 Z 1 0 t(1 − t) dt 1 (n + 1)(n + 2). Let r2(n) = X∞ k=n+1 Z 1 0 t(1 − t)(2 − t) k(k + 1)(k + 2)(k + t) dt, a2 = 1 2 Z 1 0 t(1 − t)dt. (7) Then rn = r2(n) + a1 n + 1 + a2 (n + 1)(n + 2). (8) Define for m ∈ N, m ≥ 2, rm(n) = X∞ k=n+1 Z 1 0 t(1 − t)(2 − t)· · ·(m − t) k(k + 1)(k + 2)· · ·(k + m)(k + t) dt, am = 1 m Z 1 0 t(1 − t)· · ·(m − 1 − t) dt. (9)

ON EULER'S CONSTANT -CALCULATING SUMS BY INTEGRALS Then by induction we get (+1(m+2…(+6+m( From(5) and() we have k(k+1)2 (m+1)am+1(k-1>mm+1)am1y(k-2 k+1)(k+m)! n+2 + m Since k=7+1 (h +m) (n-1)! (k-1)k…(k+m (k+1 m)(m+1)(n+m)! we have > +2)(n+ On the other hand, by ( 9) we have obviously that for m22 2)!≤ (15) Then we conclude for m> 2 6(n+2)m(m+1)(m <Tm(n)< 6n(m+1)(m+2) where Taking(11) into account we see that(16)is also valid for m= 1. From(16)we get lim rm(n)=0 Then we have established the following theorem
ON EULER’S CONSTANT —CALCULATING SUMS BY INTEGRALS 3 Then by induction we get rn = Xm k=1 ak (n + 1)(n + 2)· · ·(n + k) + rm(n). (10) From (5) and (7) we have 2a2 X∞ k=n+1 1 k(k + 1)2 X∞ k=n+1 (m + 1)am+1(k − 1)! (k + 1)(k + m)! > n(m + 1)am+1 n + 2 X∞ k=n+1 (k − 2)! (k + m)!. Since X∞ k=n+1 (k − 2)! (k + m)! = X∞ k=n+1 1 (k − 1)k · · ·(k + m) = X∞ k=n+1 1 (m + 1) ³ 1 (k − 1)k · · ·(k + m − 1) − 1 k(k + 1)· · ·(k + m) ´ = (n − 1)! (m + 1)(n + m)!, we have rm(n) > am+1n! (n + 2)(n + m)!. (14) On the other hand, by (9) we have obviously that for m ≥ 2 1 6m (m − 2)! ≤ am ≤ 1 6m (m − 1)!. (15) Then we conclude for m ≥ 2 1 6(n + 2)m(m + 1)¡m+n m ¢ < rm(n) < 1 6n(m + 1)¡m+n m ¢ (16) where µ m + n m ¶ = m!n! (m + n)!. Taking (11) into account we see that (16) is also valid for m = 1. From (16) we get lim m→∞ rm(n) = 0. Then we have established the following theorem

LI YINGYING Theorem. Let Dn= k=1 k-log(n+1)(nEN)and y=limn-oo Dn be Euler constant. Then Tn: =?-Dn= 1(n+1)…(m+k) k t(1-t)…(k-1-t)dt(k>1) Furthermore 6(n+2)m(m+1)("m 之(+1)…(m+6)561(m+1)(m+7) For the numbers ak the referee provides the following table 1375 120a5=2046=504a7=168 He also points out that ak can be expressed in terms of Stirling numbers of the first kind s(k,j)as (-1)+y(k +. Our proof is completely an elementary calculation applying integral to estimate the sums. The method be ally applied to othe Acknowledgement The author is grateful to Professor Wang who enlightened her to write down this paper; also, she thanks the referee for valuable suggestions and for correcting printing mistakes refereNCeS 1. R. M. Young, Euler's Constant Math. Gazette 75 No 472(1991), 187-190 2. D W. De Temple, A quicker convergence to Euler's Constant, The Amer. Math. Monthly 100(1993),468-470 3. Rippon P L, Convergence with pictures, The Amer. Math. Monthly 93(1986), 476-478 4. D.W. De Temple and S.H. Wang, Half integer approximations for the partial sums of the harmonic series, J. Math lysis and Applic. 160(1991), 149-156 Department of Mathematics, Beijing Normal University, Beijing 100875, P.R. China ying-dd-Ii@263.net
4 LI YINGYING Theorem. Let Dn = Pn k=1 1 k − log(n + 1) (n ∈ N) and γ = limn→∞ Dn be Euler constant. Then rn := γ − Dn = X∞ k=1 ak (n + 1)· · ·(n + k) , where a1 = 1 2 , ak = 1 k Z 1 0 t(1 − t)· · ·(k − 1 − t) dt (k > 1). Furthermore 1 6(n + 2)m(m + 1)¡m+n m ¢ < rn − Xm k=1 ak (n + 1)· · ·(n + k) < 1 6n(m + 1)¡m+n m ¢ . For the numbers ak the referee provides the following table a1 = 1 2 , a2 = 1 12 , a3 = 1 12 , a4 = 19 120 , a5 = 9 20 , a6 = 863 504 , a7 = 1375 168 , a8 = 33953 720 . He also points out that ak can be expressed in terms of Stirling numbers of the first kind s(k, j) as ak = (−1)k+1 k X k j=1 s(k, j) j + 1 . Our proof is completely an elementary calculation applying integral to estimate the sums. The method may be generally applied to other cases. Acknowledgement The author is grateful to Professor Wang who enlightened her to write down this paper ; also , she thanks the referee for valuable suggestions and for correcting printing mistakes. References 1. R.M.Young, Euler’s Constant, Math. Gazette 75 No.472 (1991), 187–190. 2. D.W. DeTemple, A quicker convergence to Euler’s Constant, The Amer. Math. Monthly 100 (1993), 468–470. 3. Rippon P L, Convergence with pictures, The Amer.Math.Monthly 93 (1986), 476–478. 4. D.W. DeTemple and S.H. Wang, Half integer approximations for the partial sums of the harmonic series, J. Math. Analysis and Applic. 160 (1991), 149–156. Department of Mathematics, Beijing Normal University, Beijing 100875, P.R. China ying-dd-li@263.net
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《分析选论作业解答》作业五.pdf
- 《分析选论作业解答》作业四.pdf
- 《分析选论作业解答》作业三.pdf
- 《分析选论作业解答》作业二.pdf
- 《分析选论作业解答》作业一.pdf
- 《分析选论作业解答》作业八.pdf
- 《分析选论作业解答》作业七.pdf
- 《分析选论作业解答》作业六.pdf
- 南京师范大学:《高等几何》课程电子教案(PPT课件)第一章 射影平面(1.2)拓广平面上的齐次坐标.ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)第一章 射影平面(1.3)射影平面.ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)第一章 射影平面(1.1)拓广平面.ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)几何变换概论(3/3).ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)几何变换概论(2/3).ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)几何变换概论(1/3).ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)第二章 射影变换(2.6)二维射影变换.ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)高等几何电子教案(共四章,数学与计算机科学学院:周兴和).ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)第四章 二次曲线理论(4.5)二次点列上的射影变换 4.6 二次曲线的仿射理论.ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)Y4.3.ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)Y2.6.ppt
- 南京师范大学:《高等几何》课程电子教案(PPT课件)Desargues构图.ppt
- 南京大学数学系:《Lebesgue 数引理》讲义(梅加强).pdf
- 南京大学数学系:《Riemann 可积的充要条件》(梅加强).pdf
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第四章 关系.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第二章 谓词逻辑.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第三章 集合.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第一章 命题逻辑.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第五章 函数.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第六章 代数结构概念及性质.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第七章 半群与群.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第八章 环和域.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第九章 格与布尔代数.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第十章 图的概念与表示.ppt
- 人民邮电出版社:高等学校21世纪教材《离散数学》电子教案(PPT课件)第十一章 几类重要的图.ppt
- 东北财经大学数学与数量经济学院:《应用概率论》第一章 事件与概率(1.1)引言 (郑永冰).ppt
- 东北财经大学数学与数量经济学院:《应用概率论》第一章 事件与概率(1.2)概率的统计定义及概率性质(郑永冰).ppt
- 东北财经大学数学与数量经济学院:《应用概率论》第一章 事件与概率(1.3)古典概型与几何概型(郑永冰).ppt
- 东北财经大学数学与数量经济学院:《应用概率论》第二章 随机变量(2.1)随机变量的概念(郑永冰).ppt
- 东北财经大学数学与数量经济学院:《应用概率论》第二章 随机变量(2.2)随机变量的分布函数(郑永冰).ppt
- 东北财经大学数学与数量经济学院:《应用概率论》第二章 随机变量(2.3)几种常见的连续型分布(郑永冰).ppt
- 东北财经大学数学与数量经济学院:《应用概率论》第二章 随机变量(2.4)随机变量函数的分布(郑永冰).ppt