南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第2章 非线性方程与方程组的数值解法

第2章 非线性方程与方程组的数值解法
第2章 非线性方程与方程组的数值解法

本章重点介绍求解非线性方程f(x)=0的几种常见和有 效的数值方法,同时也对非线性方程组 (x1,x2,…,xn)=0(i=12…,n) 求解简单介绍一些最基本的解法无论在理论上还是在 实际应用中,这些数值解法都是对经典的解析方法的突 破性开拓和补充许多问题的求解,在解析方法无能为力 时,数值方法则可以借助于计算机出色完成
本章重点介绍求解非线性方程 的几种常见和有 效的数值方法,同时也对非线性方程组 求解,简单介绍一些最基本的解法.无论在理论上,还是在 实际应用中,这些数值解法都是对经典的解析方法的突 破性开拓和补充,许多问题的求解,在解析方法无能为力 时,数值方法则可以借助于计算机出色完成. f (x) = 0 ( , , , ) 0 ( 1,2, , ) 1 2 f x x x i n i n = =

21二分法 求非线性方程(2=0的根的方法 分为两步 确定方程的有根区间 计算根的近似值
2.1二分法 求非线性方程 f (x) = 0 确定方程的有根区间 计算根的近似值 的根的方法 分为两步:

■首先确定有限区间:依据零点定理。 设f(x)∈C[a,b,且f(a)f(b)<0, 则方程f(x)=0在区间(a,b)上至少有一个根 如果在(x)上正或恒负,则此根唯
◼ 首先确定有限区间:依据零点定理。 设 ,且 , 则方程 在区间 上至少有一个根。 如果 在 上恒正或恒负,则此根唯 一。 f (x)C[a,b] f (a) f (b) 0 f (x) = 0 (a,b) ( ) ' f x (a,b)

等步长扫描法求有根区间 ■用计算机求有根区间:等步长扫描法。 设竹>O是给定的步长,取x0=a,x1=a+h, 若f(x)·f(x)b则扫描失败。再将力缩小, 继续以上步骤
等步长扫描法求有根区间 ◼ 用计算机求有根区间:等步长扫描法。 设h>0是给定的步长,取 , 若 则扫描成功;否则令 ,继续上述方法,直到成 功。如果 则扫描失败。再将h 缩小, 继续以上步骤。 x0 = a, x1 = a + h f (x0 ) f (x1 ) 0 x0 = x1 , x1 = x0 + h x1 b

等步长扫描算法 ■算法:(求方程f(x)=0的有根区间) (1)输入a,bh; (2)J6=f(aq); (3)x=a+h2=f(x),若x>b输出失败信息, 停机。 (4)若f=0。输出x,已算出方程的一个根,停 机
等步长扫描算法 ◼ 算法:(求方程 的有根区间) (1) 输入 ; (2) ; (3) ,若 输出失败信息, 停机。 (4)若 。输出 ,已算出方程的一个根,停 机。 f (x) = 0 a,b,h ( ) f 0 = f a , ( ) 1 x = a + h f = f x x b f 1 = 0 x

等步长扫描算法 (5)若M<0。输出a,xx为有根区间, 停机 (6)a=x,转3) 注:如果对足够小的步长付描失败 说明 在[a,b]内无根 在[a,b内有偶重根
等步长扫描算法 (5) 若 。输出 为有根区间, 停机 (6) ,转 3) ◼ 注:如果对足够小的步长h扫描失败。 说明: ➢ 在 内无根 ➢ 在 内有偶重根 f 0 f 1 0 a, x,[a, x] a = x [a,b] [a,b]

二分法 用二分法(将区间对平分)求解。 令a1=a,b1=b,C=(a1+b1) 若f(a1)f(c)<0,则[a1c1有根区间,否 则[c1,b为有根区间 记新的有根区间为[a2b2],则 a1b1]→[a2b2] 且 (b1-a1)
二分法 ◼ 用二分法(将区间对平分)求解。 令 若 ,则 为有根区间,否 则 为有根区间 记新的有根区间为 , 则 且 , , ( ) 2 1 1 1 a1 = a b1 = b c1 = a + b f (a1 ) f (c1 ) 0 [ , ] 1 1 a c [ , ] 1 b1 c [ , ] a2 b2 [ , ] [ , ] a1 b1 a2 b2 ( ) 2 1 1 1 b2 − a2 = b − a

二分法 ■对[a2,b2]重复上述做法得 n2 n 且 (b-a) 2
二分法 ◼ 对 重复上述做法得 ◼ 且 [ , ] a2 b2 [ , ] [ , ] ...... [ , ] ...... a1 b1 a2 b2 an bn ( ) 2 1 1 b a b a n n n − = − −

二分法 设所求的根为x 贝 x∈a lim (b, -an)=lim n(b-a)=0 n→0 lman-n→ -lim b=xs 取x=Cn=(an+bn)为x的近似解
二分法 设 所求的根为 , 则 即 取 为 的近似解 x [ , ] = 1,2...... x an bn n = 1,2...... an x bn n ( ) 0 2 1 lim ( ) lim n 1 − = − = − → → b a b a n n n n = = → → a b x n n n n lim lim( ) 2 1 n an bn x = c = + x
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第1章 绪论(刘玲).ppt
- 《博弈论》(英文版)STRATEGIC BIDDING IN ELECT.pdf
- 《概率论与数理统计》课程教学资源(教案讲义)第六章 样本及其抽样分布.doc
- 《概率论与数理统计》课程教学资源(教案讲义)第五章 大数定律及中心极限定理.doc
- 《概率论与数理统计》课程教学资源(教案讲义)第一章 概率的基本概念.doc
- 《概率论与数理统计》课程教学资源(教案讲义)第二章 随机变量及其分布.doc
- 《概率论与数理统计》课程教学资源(教案讲义)第四章 随机变量的数字特征.doc
- 《概率论与数理统计》课程教学资源(教案讲义)第三章 多维随机变量及其分布.doc
- 《概率论与数理统计》课程教学资源(教案讲义)第八章 假设检验.doc
- 《概率论与数理统计》课程教学资源(教案讲义)第七章 参数估计.doc
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)目录.ppt
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)第八章 二次型(8.1)二次型.ppt
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)第八章 二次型.ppt
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)第七章 向量空间的正交性(7.4)应用实例.ppt
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)第七章 向量空间的正交性(7.2)二次型的标准形.ppt
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)第七章 向量空间的正交性(7.3)正定二次型.ppt
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)第六章 特征值与特征向量(6.1)特征值与特征向量.ppt
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)第六章 特征值与特征向量.ppt
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)第六章 特征值与特征向量(5.2)相似矩阵与矩阵的对角化.ppt
- 成都信息工程学院:《空间解析几何线性代数》课程电子教案(PPT课件)第五章 n维向量空间(5.3)向量组的秩.ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第3章 解线性方程组的数值解法 3.1 高斯消元法.ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第3章 解线性方程组的数值解法 3.2 矩阵的三角分解法 3.3 矩阵求逆.ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第3章 解线性方程组的数值解法 3.4 向量和矩阵的范数 3.5 病态方程组与矩阵的条件数 3.6 解线性方程组的迭代法.ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第4章 函数逼近的插值法与曲线拟和法 4.1 Lagrange插值法 4.2 Newton插值法(1/2).ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第4章 函数逼近的插值法与曲线拟和法 4.2 Newton插值公式(2/2)4.3 Hermite 插值.ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第4章 函数逼近的插值法与曲线拟和法 4.4 三次样条插值 4.5 曲线拟和的最小二乘法.ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第5章 数值积分 5.1 Newton-Cotes求积公式 5.2 复化求积公式 5.3 Romberg求积公式.ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第5章 数值积分 5.4 Gauss求积公式 5.5 数值微分.ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第6章 常微分方程数值解法.ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第7章 矩阵特征值和特征向量的数值解法 7.1 幂法 7.2 Jacobi法 7.3 QR算法(1/2).ppt
- 南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第7章 矩阵特征值和特征向量的数值解法 7.3 QR算法(2/2).ppt
- 北京大学:《微积分学教程》(第二卷)PDF电子书.pdf
- 北京大学:《微积分学教程》(第三卷)PDF电子书.pdf
- 北京大学:《微积分学教程》(第一卷)PDF电子书.pdf
- 西安交通大学:《MATLAB程序设计》课程教学资源(PPT课件讲稿)第一讲 MATLAB简介.ppt
- 西安交通大学:《MATLAB程序设计》课程教学资源(PPT课件讲稿)第二讲 MATLAB的程序设计.ppt
- 西安交通大学:《MATLAB程序设计》课程教学资源(PPT课件讲稿)第三讲 MATLAB的 SIMULINK仿真.ppt
- 西安交通大学:《MATLAB程序设计》课程教学资源(PPT课件讲稿)第10章 MATLAB图形句柄.ppt
- 西安交通大学:《MATLAB程序设计》课程教学资源(PPT课件讲稿)第11章 MATLAB图形用户界面设计.ppt
- 西安交通大学:《MATLAB程序设计》课程教学资源(PPT课件讲稿)第12章 Simulink动态仿真集成环境.ppt