大连理工大学:《物理学》课程教学资源(PPT讲稿)Geometric Phase in composite systems

Geometric Phase in composite systems .X.yⅰ Department of Physics, Dalian University of Technology With C. H. Oh, L. C Kwek, D. M. Tong e NUS Erik Sjoqvist e Uppsala Univ H. T. Cui, L. C. Wang, X L Huang e Dalian Univ of tech
Geometric Phase in composite systems 衣学喜 X. X. Yi Department of Physics, Dalian University of Technology With C. H. Oh, L. C. Kwek, D. M. Tong @ NUS; Erik Sjoqvist @ Uppsala Univ.; H. T. Cui, L. C. Wang, X. L. Huang @ Dalian Univ. of Tech

Outline Why study geometric phase Geometric phase in bipartite systems Geometric phase in open systems Geometric phase in dissipative systems Geometric phase in dephasing systems Geometric phase and QPTs Conclusion
2 Outline • Why study geometric phase • Geometric phase in bipartite systems • Geometric phase in open systems – Geometric phase in dissipative systems – Geometric phase in dephasing systems – Geometric phase and QPTs • Conclusion

Why study geometric phase Classical counterpart of berry Phase it is connected to the intrinsic curvature of the sphere Parallel transport 4 http://www.mi.infmit/manini/berryphase.html
3 Why study geometric phase Classical counterpart of Berry Phase; it is connected to the intrinsic curvature of the sphere. Parallel transport http://www.mi.infm.it/manini/berryphase.html

Parameter dependent system: H(n) 41(2,|w(2)}1() Adiabatic theorem: ()=v(()ee Geometric phase d (vn in y
4 , | n n ( ) ( ) ( ) ( ( )) ( ) 0 / | | t n n i dt i t n t t e e − − = 0 t n n n d i = Geometric phase: Adiabatic theorem: Parameter dependent system: H ( ) n ( )

Well defined for a closed path ,=乎aww
5 n n n C d i = Well defined for a closed path x y C

Why study geometric phase? It is an interesting phenomenon of Quantum mechanics, which can be observed in many physical systems It has interesting properties that can be exploited to increase the robustness of Quantum Computation Geometric Quantum Computation
6 Why study geometric phase? • It is an interesting phenomenon of Quantum mechanics, which can be observed in many physical systems... • It has interesting properties that can be exploited to increase the robustness of Quantum Computation: “Geometric Quantum Computation

Geometric quantum computation 100)->00)01〉-01) 10)〉10),1)-1) U =eXpRE(tdt Dynamical evolution Geometric phase Geometric gates can be more robust against different sources of noise
7 exp[ ( ) ] U = −i E t dt i Dynamical evolution Geometric phase Geometric gates can be more robust against different sources of noise | 00 | 00 ,| 01 | 01 , |10 |10 ,|11 |11 , → → → → − g Geometric quantum computation

Why geometric phase robust? Geometric phase is robust against classical fluctuation of the phase(of the first order)see for example G. D. Chiara. G. M. Palma, Phys. Rev Let.91,090404(2003) It is independent of systematic errors
8 Why geometric phase robust? • Geometric phase is robust against classical fluctuation of the phase (of the first order) see for example: G. D. Chiara, G. M. Palma, Phys. Rev. Lett. 91, 090404 (2003). ◼It is independent of systematic errors

Geometric phase in bipartite systems Almost all systems in Qip are composite If entanglement change Berry's phase what role the inter-subsystem couplings may play
9 Geometric phase in bipartite systems • Almost all systems in QIP are composite. • If entanglement change Berry’s phase. • What role the inter-subsystem couplings may play?

Berry' s phase of entangled spin pair E. Sjoqvist, Pra 62, 022109(2000 without inter-subsystem coupling) Separable pair, total BP=sum over individual BP For entangled pair, with one particle driven by the external magnetic field Initial state|H()≥=c0s个+sia geometric phase O. =T(cos a cos 8-1) B 6=arc cos[cos a cos g]
10 Berry’s phase of entangled spin pair E. Sjoqvist, PRA 62, 022109(2000)(without inter-subsystem coupling) • Separable pair, total BP=sum over individual BP. • For entangled pair, with one particle driven by the external magnetic field | (0) cos | sin | 2 2 •Initial state = + (cos cos 1) g = − •Geometric phase B S ' = arc cos[cos cos ]
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中山大学:《大学物理实验》课程实验报告(讲义)实验A5 用示波器测量交流信号的基本参数.pdf
- 电子储存环物理(PPT课件讲稿)第五讲 辐射激发、束团尺寸.pptx
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第8讲 静磁场——稳恒磁场的矢势(静磁场的矢势).ppt
- 太原师范学院:本科毕业生教育实习教案(高一物理——行星的运动).doc
- 西安电子科技大学:《电波传播概论》课程教学资源(PPT课件讲稿)第四部分 地面波传播.pptx
- 《大学物理》课程PPT教学课件(力学)力学部分主要公式及题解.ppt
- 哈佛大学:時空的歷史(PPT讲稿,丘成桐).ppt
- 中国科学技术大学:Simulation for the feature of non-Abelian anyons in quantum double model using quantum state preparation.ppt
- 《固体物理学》课程教学资源(PPT课件)固体中的原子无序 Imperfections in Solids.ppt
- 中山大学:《大学物理实验》课程实验报告(讲义)实验A1 基本物理量测量及不确定度分析.pdf
- 基于立体视觉的深度估计(PPT课件讲稿)结构光测距成像系统.ppt
- 香港中文大学:Ultracold polar molecules.pptx
- 《光电子技术》课程教学资源(PPT课件讲稿)第二章 光辐射与光源.ppt
- 冷原子物理和量子信息(PPT讲稿)相干原子介质中的时空光子弹(浙江师范大学物理系:李慧军).ppt
- 《电磁学与电动力学》课程教学资源(PPT课件讲稿)第二章 静电场中的导体和电介质.ppt
- 大学物理《电磁学》课程教学资源(PPT课件讲稿)第三章 静电能.ppt
- 物理实验理论与基础知识(PPT课件讲稿,共三章).ppt
- 上海市激光技术研究所:激光的安全和防护(PPT讲稿).ppt
- 激光器的设计与制作(PPT课件讲稿)半导体激光技术——非线性光学.ppt
- 《大学物理》课程教学资源(热力学习题).ppt
- 《影像物理学》课程教学资源(PPT课件)第二章 X射线与物质的相互作用.ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第十章 振动和波.ppt
- 分布电荷的电场(PPT讲稿)Electric field of distributed charges.ppt
- 太原师范学院:本科毕业生教育实习教案(高二物理——电感和电容对交变电流的影响).doc
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第4讲 电磁现象的普遍规律 §1.2 电流和磁场.ppt
- 《大学物理》课程教学资源(习题)守恒定律(含解答).ppt
- 《大学物理》课程PPT教学课件(电磁学)第十章 稳恒磁场.ppt
- 《光电技术》课程教学资源(PPT课件讲稿)第八章 光纤探测技术与系统.ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第23讲 静电场——电像法(主讲教师:宗福建).ppt
- 近代物理学(PPT讲稿)Modern physics.ppt
- 《高分子物理》课程教学资源(PPT课件讲稿)第6章 橡胶弹性 Rubber Elasticity.ppt
- 中国科学技术大学:《半导体器件原理》课程教学资源(PPT课件)绪论 Principle of Semiconductor Devices(主讲:徐军).ppt
- 《现代太阳物理导论》课程教学资源(PPT课件讲稿)第四章 太阳光球.ppt
- 《高分子物理》课程教学资源(PPT课件)第4章 分子量与分子量分布 Molecular Weight Molecular Weight Distribution.ppt
- 《原子物理学 Automic Physics》课程教学资源(PPT课件讲稿)第二章 原子的能级和辐射.ppt
- 《大学物理》课程电子教案(PPT教学课件)第十章 波动光学.ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第四讲 辐射阻尼.pptx
- 中国科技大学:夸克物质(PPT讲稿)量子色动力学的凝聚态物理(近代物理系:王群).ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第7讲 电磁现象的普遍规律 §1.5 电磁场的能量和动量.ppt
- 冷原子物理和量子信息学术讨论(PPT讲稿)Entanglement purification and faithful qubit transmission.ppt