中国高校课件下载中心 》 教学资源 》 大学文库

《大学物理》课程电子教案(PPT教学课件)第十章 波动光学

文档信息
资源类别:文库
文档格式:PPT
文档页数:48
文件大小:1.15MB
团购合买:点击进入团购
内容简介
11-1 光的相干性 光程 11-2 分波面干涉 11-3 分振幅干涉 11-4 光的衍射 11-5 衍射光栅 11-6 光的偏振
刷新页面文档预览

第十章 波动光学

第十章 波动光学

11-1光的相干性光程

11-1 光的相干性 光程

光的相干性 1.产生相干光的条件 两束光频率相同,振动方向一致,有恒定的相位差 2.获得相干光的方法 把由光源上同一点发的光分成两部分,然后再使 这两部分叠加起来 分波面法 在同一波面上取两固定点光源,发出的光构成相 干光,这种方法为分波面法.如杨氏双缝干涉实验. 分振幅法 束光线经过介质薄膜的反射与折射,形成的两 束光线为相干光,这种方法为分振幅法.如薄膜干涉 等厚干涉

一、光的相干性 两束光频率相同,振动方向一致,有恒定的相位差. 1.产生相干光的条件 2.获得相干光的方法 把由光源上同一点发的光分成两部分,然后再使 这两部分叠加起来. ➢分波面法 在同一波面上取两固定点光源,发出的光构成相 干光,这种方法为分波面法. 如杨氏双缝干涉实验. ➢分振幅法 一束光线经过介质薄膜的反射与折射,形成的两 束光线为相干光,这种方法为分振幅法. 如薄膜干涉、 等厚干涉

P S 分振幅法 分波阵面法

* S 分振幅法 S* A B 分波阵面法 P

、光程和光程差 光程 两相干光波在介质 中以波长传播 a,=A cos(at+ a,=A, coS(at+o) 若1=2,12-1=1 则S、S2传到P点的光振动的相位差: q=(o+-2兀2)-(o+2-2兀2) =2(21)=2π

二、光程和光程差 则S1、S2传到P点的光振动的相位差: ( 2π ) ( 2π ) 2 2 1 1 n n r t r t      =  + − − + − cos( ) 1 = 1  +1 a A t cos( ) 2 = 2  +2 a A t 2π( ) 2 1 n r r  − = 两相干光波在介质 中以波长 传播 n r1 r2 P S1 S2 n n n l  = 2π 若 1 =2 , r − r = l 2 1 1. 光程

用介质中的波长λ计算相位差比较麻烦,统一用 光在真空中的波长九计算相位差可简化计算. 以n表示的折射率 由 且l=Av,c= n v 所以介质中的波长为n= q=2兀 2元 n 定义光程:介质折射率n与光的几何路程r之积m

n u c λ ν λν n n = = =   所以介质中的波长为 由 , u c n =   , u = n c =  n n   = n l   = 2π λ nl = 2π 定义光程: 介质折射率n与光的几何路程r之积 nr. 以n表示的折射率 且 用介质中的波长 计算相位差比较麻烦,统一用 光在真空中的波长 计算相位差可简化计算. n 

物理意义:光程是在引起相同相位 改变的条件下,与光在折射率为n的介质 中的几何路程相当的同一单色光在真空3 中的传播路程m 如果光线穿过多种介质时,其光程为 r1 r2 ri rr n1 n2 ni nn L=n11+n22+…+n=∑n2n 对应的相位改变△=27=∑

物理意义:光程是在引起相同相位 改变的条件下,与光在折射率为n的介质 中的几何路程r相当的同一单色光在真空 中的传播路程nr.   r nr n = 如果光线穿过多种介质时,其光程为 n n L = n r + n r +  + n r 1 1 2 2 r1 n1 r2 n2 ri ni rn nn =  = n i i i n r 1   L 对应的相位改变  = 2π =  i i n r  2π

2.光程差与相位差 假设光在两种不同介质中传播,则 △q=2丌( 122=117i 设光程差为δδ=122-n1 则△q=2兀 3.用光程差表示干涉加强和减弱的条件 士2/,(k=O,12,2,…)明纹 由△q=2= 元-1土(2k+1),(k=012,)暗纹

2. 光程差与相位差 假设光在两种不同介质中传播,则 2π( ) 2 2 1 1   n r − n r  = 设光程差为  2 2 1 1  = n r − n r   则  = 2π 3. 用光程差表示干涉加强和减弱的条件   由  = 2π =  2kπ, (k = 0,1,2, ) (2k +1)π, (k = 0,1,2, ) 明纹 暗纹

±,(k=0,1,2,)明纹 得d ±(2k+1),(k=0,1,2,…)暗纹 2 d=±,(k=0,1,2,) 干涉加强 △q=±2k兀,(k=0,1,2,…) δ=±(2k+1),(k=0,12,…) 干涉减弱 △φ=士(2k+1)兀,(k=0,,2

 =  k, ( k = 0,1,2,)  =  2 kπ, ( k = 0,1,2,) ➢ 干涉加强 ➢ 干涉减弱 , ( 0,1,2, ) 2 =  ( 2 k + 1 ) k =    =  ( 2 k + 1 ) π, ( k = 0,1,2,)  k, ( k = 0 , 1 , 2 , ) , ( 0,1,2, ) 2  ( 2 k + 1 ) k =   明纹 暗纹 得  =

112分波面干涉 预习要点 由杨氏双缝干涉和洛埃镜实验装置领会分波面干涉 装置的基本特征 2.如何由光程出发,对杨氏双缝干涉条纹分布规律做 定量分析? 3.注意半波损失现象的发生条件

11-2 分波面干涉 预习要点 1. 由杨氏双缝干涉和洛埃镜实验装置领会分波面干涉 装置的基本特征. 2. 如何由光程出发,对杨氏双缝干涉条纹分布规律做 定量分析? 3. 注意半波损失现象的发生条件

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档