《轮机仿真及控制技术》课程教学课件(讲稿)04 Numerical Process Modeling of Marine Engines

LECTUREFOUR-4Numerical Process Modeling of MarineEnginesLEARNINGOBJECTIVES:To define and calculate sound speed and Mach number.To define nozzles and diffusers and their flowregime:To understand the effect of cross-section variation on Machnumber:To understand the effect of back pressureTo calculatemass flowratefor subsonicand supersonicflowthrough convergingnozzleTo decide turbo speed at a certain operating point·.To decide turbine and compressor isentropic efficiencyTodecide intake (scavenging)pressure and temperature at a·certainoperatingpointTo determine exhaust pressure and temperature at a certainoperating pointTo comply with turbine outlet condition requirements if specifiedor determinethose conditions if not specified21
1 LECTURE FOUR – 4 Numerical Process Modeling of Marine Engines 1 LEARNING OBJECTIVES • To define and calculate sound speed and Mach number • To define nozzles and diffusers and their flow regime • To understand the effect of cross-section variation on Mach number • To understand the effect of back pressure • To calculate mass flow rate for subsonic and supersonic flow through converging nozzle • To decide turbo speed at a certain operating point • To decide turbine and compressor isentropic efficiency • To decide intake (scavenging) pressure and temperature at a certain operating point • To determine exhaust pressure and temperature at a certain operating point • To comply with turbine outlet condition requirements if specified or determine those conditions if not specified 2

FundamentalsofCompressibleIsentropicFlowforengine-turbomatchingNik.XirosSound wavesSound waves areessential inunderstanding compressible flows.-Asoundwaveisa small pressuredisturbancethatpropagates throughagas,liquid,orsolidatavelocitythatdependsonthepropertiesofthemedium.The velocityof sound is an intensivepropertywhosevaluedepends onthestate of the medium through which sound propagates;knowing its value isveryimportantinthestudyofcompressibleflows42
2 Fundamentals of Compressible Isentropic Flow for engine-turbo matching Nik. Xiros 3 Sound waves Sound waves are essential in understanding compressible flows. A sound wave is a small pressure disturbance that propagates through a gas, liquid, or solid at a velocity that depends on the properties of the medium. The velocity of sound is an intensive property whose value depends on the state of the medium through which sound propagates; knowing its value is very important in the study of compressible flows. 4

Sound wavesPROPAGATIONOFSOUNDWAVES-ObserveronwavePistonUndisturbed fluid4Vc-vSp+App+ApV=0p+pp+4pp.T.p2T+A7T+A7p.p.TStationaryControl volune for anobservermovingwithobserverthe wave(b)(a)a)Propagationthroughquiescentfluidas experiencedby stationaryobserverb)PropagationaccordingtoobserveratrestrelativelytothewaveSound wavesThevelocityof sound is an intensivepropertywhosevaluedepends onthestateofthemediumthroughwhichsoundpropagates.Specialcase:anidealgaswithconstantspecificheats.=Vypv=RT:MachnumberM-Lc63
3 Sound waves PROPAGATION OF SOUND WAVES a) Propagation through quiescent fluid as experienced by stationary observer b) Propagation according to observer at rest relatively to the wave 5 Sound waves The velocity of sound is an intensive property whose value depends on the state of the medium through which sound propagates. Special case: an ideal gas with constant specific heats. Mach number 6

Isentropiccompressibleflow.Conservation of energyU=Q-W+m.h.+-m+g+gzmhour +2=W-0+[(-h)++g(2-2)1Stagnation-V-VW=O+mlh.-V22→h,=h+2W-O=0V.-V=0Isentropic compressibleflow equationswc--{-():RatiosTT,P(P2)?Differentialrelationshipsh+- -l- dh--.d=,al--a= --a2cp=pc.=pdp-pp-dp=0=dppYpYRT"CPVr=mRT=p=pRT=E-PRTdr=ct=+=0=dp=cpdl7-1p-ITdp=c,pdT=-pVdvdp=-Vdv"-pmdydp=V2c24
4 Isentropic compressible flow Conservation of energy Stagnation 7 Isentropic compressible flow equations Ratios Differential relationships 8

IsentropiccompressibleflowequationsEffectofcross-sectionvariation-dpdadv=0PAVdAdy=(M°-1)=dp=-pMaVAV9Isentropic compressibleflowThe differential equation derived above shows the variation of velocity with cross-sectional area. Thefollowingfour cases canbeidentifiedCase I: Subsonic (M 1) nozzle, the duct converges in the direction of flow - Velocity increases;enthalpy,pressure and density decrease.Case 2: Supersonic (M > 1) nozzle, the duct diverges in the direction of flow - Velocity inereases;enthalpy,pressure and density decrease.Case 3: Supersonic (M >1) diffuser, the duct converges in the direction of flow -Velocity decreases.enthalpy,pressure and density increase.Case 4: Subsonic (MI) diffuser, the duct diverges in the direction of flow Velocity decreasesenthalpy, pressure and density increase.105
5 Isentropic compressible flow equations Effect of cross-section variation 9 Isentropic compressible flow 10

Isentropiccompressibleflow:backpressureValve to adjustback pressurePo.T.ExhaustregRIsentropic compressibleflow:Subsoniccase.Velocity-/2c,(T-Tr--(e)MassflowratemRTVART.:RT.*4Ep=iVRT12
6 Isentropic compressible flow: back pressure 11 Isentropic compressible flow: Subsonic case Velocity Mass flow rate 12

Isentropiccompressibleflow:Soniccase- Critical pressure and temperature名=h+"#-1+=1+1F==0+2e,T2RT2T--1+号M2Te()产-(*号m学B()e-213Isentropic compressibleflow:Sonic caseCriticalmassflowrate-(p)pNRT-ARm=m=pAc=ART*RT然=m=A62+RT11147
7 Isentropic compressible flow: Sonic case Critical pressure and temperature 13 Isentropic compressible flow: Sonic case Critical mass flow rate 14

CompressibleflowappliedtoturbochargingHowisthetheoryof IsentropicCompressibleFlowrelatedtoanalysisanddesign of turbosupercharging systems for marine engines?ExhaustFuel flowIntercoolerReceiverAirflowExhaustflowEngineScavengingTurbochargerReceiverCyindersTurbineTurbochargerCompressor15Engine-turbochargermatchingNik. Xiros168
8 Compressible flow applied to turbocharging How is the theory of Isentropic Compressible Flow related to analysis and design of turbosupercharging systems for marine engines? 15 Engine-turbocharger matching Nik. Xiros 16

Preparation&prerequisites fromengineanalysisThe following data are neededbefore embarking on turbo matching:(1)Enginegeometryandconfiguration(brakepower,nominalrpm,strokenumber,cylindernumbergeometry,valve/portoverlapetc.)(2) Fuel consumption and required A/F ratio(3)Indicatordiagramorresidual chemical energyoffuel asproportion intheexhaustgas;for 4-strokes,heat transfer fromcylinder walls to aircharge duringintake(4)Engineroomambientatmosphericconditions(airpressure&temperature)(5)Turbineoutletconditionrequirements, ifany17Turbochargergivens(1) Air compressor performance info commonly in formof map(s)(2)Aircompressorgeometrical data(effectiveareaetc.)(3)Gasturbinegeometryandconfigurationdata:flowcorrectionparameternozzleandwheeleffectiveareas,resistancecoefficientetc.189
9 The following data are needed before embarking on turbo matching: (1) Engine geometry and configuration (brake power, nominal rpm, stroke number, cylinder number geometry, valve/port overlap etc.) (2) Fuel consumption and required A/F ratio (3) Indicator diagram or residual chemical energy of fuel as proportion in the exhaust gas; for 4-strokes, heat transfer from cylinder walls to air charge during intake (4) Engine room ambient atmospheric conditions (air pressure & temperature) (5) Turbine outlet condition requirements, if any Preparation & prerequisites from engine analysis 17 (1) Air compressor performance info commonly in form of map(s) (2) Air compressor geometrical data (effective area etc.) (3) Gas turbine geometry and configuration data: flow correction parameter, nozzle and wheel effective areas, resistance coefficient etc. Turbocharger givens 18

StepO:EngineairrequirementsCalculaterflowrequirementsandmasssairsbaseddonbrakepowerefficiency/performancedataaswellasfuel propertiesIf the indicator diagram isprovided instead ofthe directvalueof Ca,calculatetheheatrejectedby the cycle, itwill be neededduring calculation ofexhaustgasspecificenthalpy19Step1:Decideturbo speed and compressorisentropicefficiencyUsing the air mass flow rate calculated in the previous stage use thecompressormapsprovidedto:1)Choose turbocharger shaft speedNrc2)Choosecompressorisentropicefficiency,licGUIDELINESMaximizing efficiency is always good provided the air mass flow raterequirement is met. In general, if higher efficiency is chosen, the speed willneed to be increased to meet the same mass flow rate value. An efficiencyvalue above 0.75 is generally achievable and good, provided that the speed isnot pushed to the machinery's limit aka more than 90-95% of the maximumadmissible.Marine engine turbochargers usually run on a constant efficiency curve (e.g.the 80% line). Then the mass flow rate and compression (pressure) ratio isadjusted to match the engine's operating point by changing the speed of theturbo.2010
10 Calculate mass air flow requirements based on brake power and efficiency/performance data as well as fuel properties If the indicator diagram is provided instead of the direct value of ζa , calculate the heat rejected by the cycle, it will be needed during calculation of exhaust gas specific enthalpy Step 0: Engine air requirements 19 Using the air mass flow rate calculated in the previous stage use the compressor maps provided to: 1) Choose turbocharger shaft speed NTC. 2) Choose compressor isentropic efficiency, ηiC. GUIDELINES: Maximizing efficiency is always good provided the air mass flow rate requirement is met. In general, if higher efficiency is chosen, the speed will need to be increased to meet the same mass flow rate value. An efficiency value above 0.75 is generally achievable and good, provided that the speed is not pushed to the machinery’s limit aka more than 90-95% of the maximum admissible. Marine engine turbochargers usually run on a constant efficiency curve (e.g. the 80% line). Then the mass flow rate and compression (pressure) ratio is adjusted to match the engine’s operating point by changing the speed of the turbo. Step 1: Decide turbo speed and compressor isentropic efficiency 20
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《轮机仿真及控制技术》课程教学课件(讲稿)05 State-space modeling and control of ship propulsion.pdf
- 《轮机仿真及控制技术》课程教学课件(讲稿)03 P-I-D engine speed governors.pdf
- 《轮机仿真及控制技术》课程教学课件(讲稿)02 Applied control engineering mathematics.pdf
- 《高等路面设计理论》课程授课教案(讲义)Formulation Of Analytical Wet Weather Safety.doc
- 《高等路面设计理论》课程授课教案(讲义)System Identification Method for Backcalculating Pavement Layer Properties.pdf
- 《高等路面设计理论》课程授课教案(讲义)Pavement Roughness on Expansive Clays.doc
- 《高等路面设计理论》课程授课教案(讲义)Prediction of TyreRoad Friction.doc
- 《高等路面设计理论》课程授课教案(讲义)THE FOURIER TRANSFORM(扫描版).pdf
- 《船舶水动力学》课程教学课件(讲稿)第一章 运动方程及干模态分析 dry hull analysis symmetric.pdf
- 《船舶水动力学》课程教学课件(讲稿)第二章 规则波波浪理论 Regular waves.pdf
- 《船舶水动力学》课程教学课件(讲稿)第三章 二维水动力理论及切片理论 2D hydrodynamics Strip theory.pdf
- 《船舶水动力学》课程教学课件(讲稿)第五章 不规则波中水动力响应分析 Random seas.pdf
- 《船舶水动力学》课程教学课件(讲稿)第四章 规则波中对称水动力响应分析 EoM and responses in reg waves.pdf
- 《船舶与海洋工程结构风险评估》课程教学大纲 Structural Risk Assessment of Naval Architecture and Ocean Engineering.docx
- 《船舶安全与可靠性理论》课程教学课件(英文讲义)Safety and Reliability Analysis Lecture 5/5.pdf
- 《船舶安全与可靠性理论》课程教学课件(英文讲义)Safety and Reliability Analysis Lecture 4/5.pdf
- 《船舶安全与可靠性理论》课程教学课件(英文讲义)Safety and Reliability Analysis Lecture 3/5.pdf
- 《船舶安全与可靠性理论》课程教学课件(英文讲义)Safety and Reliability Analysis Lecture 2/5.pdf
- 《船舶安全与可靠性理论》课程授课教案(英文讲义)Safety and Reliability Analysis Lecture 1/5.pdf
- 《机械系统工况监测与故障诊断》课程教学课件(讲稿)第9章 液压系统的故障分析与诊断.pdf
- 《轮机仿真及控制技术》课程教学课件(讲稿)01 Marine engineering thermodynamics.pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Ballast Water Treatment Technologies(Current Status).pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Electric and Hybrid Propulsion.pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Modelling Emission Factors and Emission Indices.pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Tidal Energy.pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Mitigating Technologies for Cleaner Air.pdf
- 《油气运输船舶储运技术》课程教学大纲 Technology on Oil or Gas Transport Tanker.pdf
- 《油气运输船舶储运技术》课程授课教案(讲义,共十六章,武汉理工大学:王弢).pdf
- 《油气运输船舶储运技术》课程教学资源(实验指导)油气集输实验指导书.doc
- 《油气运输船舶储运技术》课程教学资源(实验指导)输油管路模拟实验指导书(油气储运专业用).doc
- 《油气运输船舶储运技术》课程教学资源(实验指导)小呼吸蒸发损耗实验实验指导书.doc
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第一章 船舶基础知识.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第二章 石油与运输.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第三章 现代油船船型特点(现代油运船舶布置及结构).ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第四章 现代油船的设备系统.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第八章 液化气船的设计及构造原则.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第五章 油船的安全管理.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第七章 液化气体的危害特性.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第六章 液化气与运输.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第十章 液化气船液货装卸作业.ppt