《轮机仿真及控制技术》课程教学课件(讲稿)03 P-I-D engine speed governors

LECTURETHREE-3P-I-Denginespeedgovernors1LEARNINGOBJECTIVESTounderstand single-input-single-output control concepts:Todefine and understand benefits &limitations of on/off control.To define the full PID control law in its main formsTo understand P/PI/PID /PD-control benefits and issues·To be able to perform basic steady-state error analysis of linear.systems using the Laplace Transform's Final Value TheoremTo be able to perform perturbation analysis of marine propulsion.engines in order to determine the rpm regulation problem·To apply robust control theory and poleplacement todesigndisturbance rejection PI and PID speed governors·To applyrobustness analysis for both parametric uncertainty andneglected dynamicsTo use available signals shipboard in order to improve robustness.of PIDenginecontrollers21
1 LECTURE THREE – 3 P-I-D engine speed governors 1 LEARNING OBJECTIVES • To understand single-input-single-output control concepts • To define and understand benefits & limitations of on/off control • To define the full PID control law in its main forms • To understand P / PI / PID / PD-control benefits and issues • To be able to perform basic steady-state error analysis of linear systems using the Laplace Transform’s Final Value Theorem • To be able to perform perturbation analysis of marine propulsion engines in order to determine the rpm regulation problem • To apply robust control theory and pole placement to design disturbance rejection PI and PID speed governors • To apply robustness analysis for both parametric uncertainty and neglected dynamics • To use available signals shipboard in order to improve robustness of PID engine controllers 2

PIDControlFundamentalsNik.XirosSingle-Input-Single-Output system controlDisturbancedReferencesignalResponseProcess(setpoint)Error(or output)inputHG(s)7y1C+K(s)uProcessControllerControl(or plant)signalFeedbackpath (orbranch)42
2 PID Control Fundamentals Nik. Xiros 3 4 r e d u y ∆ιαταραχή Ελεγκτής Σήµα ελέγχου Σφάλµα Έξοδος ∆ιεργασία Είσοδος διεργασίας Κλάδος ανατροφοδοτήσεως Σήµα αναφοράς K(s) G(s) Process input Process (or plant) Disturbance Control signal Controller Error Reference signal (setpoint) Response (or output) Feedback path (or branch) Single-Input-Single-Output system control

Single-Input-Single-Output system controlY(s) =G(s) [U(s)+ D(s)]U(s) = K(s) E(s) = K(s) [R(s) -Y(s)]]G(s)G(s)K(s)=Y(s)=D(s)R(s)+1+G(s)K(s)1+G(s)K(s)ON/OFFControl+A, e≥+Zd[A·sgn(e), le|≥ Za0,el<Zdu =0,lel<Za-A, e≤-Zdu+1e3
3 [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) Y s G s U s D s U s K s E s K s R s Y s G s K s G s Y s R s D s G s K s G s K s = ⋅ + ⇒ = ⋅ = ⋅ − ⇒ = ⋅ + ⋅ + + 5 Single-Input-Single-Output system control , sgn( ), 0, 0, , d d d d d A e Z A e e Z u e Z e Z A e Z + ≥ + ⋅ ≥ = = < < − ≤ − 6 ON/OFF Control e u +1 -1

ON/OFFControl-EXAMPLEA*sgn(u)5S+1ReferenceResponseON/OFFProcesssignalcontrollawu+1ON/OFFControl-EXAMPLEAE0.1F1.0A = 15.0The controlsignal is notplottedbecauseitoscillatesathigh frequencybetyen-15and+15!!-
4 7 ON/OFF Control - EXAMPLE Σήµα αναφοράς A*sgn(u) Ελεγκτής ON/OFF 1 5s+1 ∆ιεργασία y Έξοδος ON/OFF Process Response control law Reference signal e u +1 -1 8 ON/OFF Control - EXAMPLE 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1 Σήµα ελέγχου Απόκριση (έξοδος) A = 0.1 Control signal Response (output) 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1 A = 1.0 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 A = 2.0 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1 A = 15.0 Σήµα ελέγχου ταλαντώνεται µεταξύ -15 και +15!! The control signal is not plotted because it oscillates at high frequency between –15 and +15 !!

ON/OFFControl-EXAMPLE70.0Zo912009A*sgn(u)5s+1ReferenceResponseON/OFFProcesssignalcontrol lawTheP-I-D ControllerControlTrackingSetpointProportionalactionerrorvaluegainCkiOverallIntegralIntegratorgaingainActual★du/dtKdvalueDifferentialDerivative4gaindu(0)=K,-e(0)+K, Je(5)dE+Ka-e(t)dt2K,+K,-$+K, -s?FU(s)= K(s)-E(s)=+K.:sE(s)=-E(s)sS105
5 9 ON/OFF Control – EXAMPLE Σήµα αναφοράς A*sgn(u) Ελεγκτής ON/OFF 1 5s+1 ∆ιεργασία y Έξοδος ON/OFF Process Response control law Reference signal 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Zd = 0.03 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Zd = 0.3 The P-I-D Controller 10 Tracking error e Actual value y Setpoint value Control action u Kp Proportional gain K Overall gain s 1 Integrator Ki Integral gain Kd Differential gain du/dt Derivative 0 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) t p i d i i p d p d d u t K e t K e d K e t dt K K K s K s U s K s E s K K s E s E s s s = ⋅ + ⋅ + ⋅ ξ ξ + ⋅ + ⋅ = ⋅ = + + ⋅ ⋅ = ⋅ ∫

Forms of thePIDControlLawAnalyticformdu(t)=K, e(t)+K, Je(5)d$+Kde(t)dt0↑K,+K,s+K,-s?K;U(s)= K(s)-E(s) =L+KasK.E(s) =.E(s)sSPracticalform[e(c)d5-T.% 0)u(t)= K,-y(t)+dt11Proportionalcontrol[uo +K,-eo, e(t)>eou(t)=uo +Kp-e(t), -eo ≤e(t)≤eouo-Kpeo, e(t)<-eu+1e126
6 - Analytic form 0 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) t p i d i i p d p d d u t K e t K e d K e t dt K K K s K s U s K s E s K K s E s E s s s = ⋅ + ⋅ + ⋅ ξ ξ + ⋅ + ⋅ = ⋅ = + + ⋅ ⋅ = ⋅ ∫ 0 1 ( ) ( ) ( ) ( ) t p d i d u t K y t e d T y t T dt ξ ξ = ⋅ − + ⋅ − ⋅ ∫ 11 Forms of the PID Control Law - Practical form 0 0 0 0 0 0 0 0 0 , ( ) ( ) ( ), ( ) , ( ) P P P u K e e t e u t u K e t e e t e u K e e t e + ⋅ > = + ⋅ − ≤ ≤ − ⋅ < − 12 Proportional control e u +1 -1

Proportionalcontrol-EXAMPLE1Static plant equation y=Kss u=Kss (uo +K,e)Kso+Kk,=e=KsoClosed-loopequation y=1+KssK,1+KssK,Steady-state erroruo=r/KssK,→813Proportional control-EXAMPLE 2KssIst-order plantG(s)=Ts+1Closed-loopequationKssK,KssY(s) =D(s)R(s)+ts+1+KsK,Ts+1+KssK,147
7 Static plant equation 0 ( ) SS SS p y K u K u K e = ⋅ = ⋅ + ⋅ Closed-loop equation 0 0 1 1 SS SS p SS SS p SS p K u K K r r K u y e K K K K ⋅ + ⋅ − ⋅ = ⇒ = + + Steady-state error 0 / SS p u r K K = → ∞ 13 Proportional control – EXAMPLE 1 1 st-order plant ( ) 1 KSS G s τ s = + Closed-loop equation ( ) ( ) ( ) 1 1 SS p SS SS p SS p K K K Y s R s D s τ τ s K K s K K = ⋅ + ⋅ + + + + 14 Proportional control – EXAMPLE 2

Proportional control-Final Value Theoremd(t)=ustep(t) D(s)=1/ suKssD(s)lim(y(t)) = lim(sY(s))= limSTs+1+KsK,5-→0=Kss1lim (y(t) = lim1+KssK,Ts+1+KssK,50s15Proportional-Integralcontrolu(0)= K, e(t)+K, f'e(5)ds↑K,-s+K,K.i.E(s)U(s)=IK+·E(s) =sS168
8 ( ) ( ) ( ) 0 0 0 ( ) ( ) ( ) 1/ lim ( ) lim ( ) lim ( ) 1 1 lim ( ) lim 1 1 step SS t s s SS p SS SS t s SS p SS p d t u t D s s K y t sY s s D s s K K K K y t s s K K s K K τ τ →∞ → → →∞ → = ⇔ = ⇓ = ⋅ ⋅ + + ⇓ = ⋅ ⋅ = + + + = 15 Proportional control – Final Value Theorem 0 ( ) ( ) ( ) ( ) ( ) ( ) t p i p i i p u t K e t K e d K K s K U s K E s E s s s = ⋅ + ⋅ ξ ξ ⋅ + = + ⋅ = ⋅ ∫ 16 Proportional-Integral control

Proportional-Integral controlG(s)= P,(s)Generic linearplantPo(s)(K,+K,s)·p,(s)Closed-loop equation Y(s)=R(s)+s-po(s)+(K, +K, s)-p,(s)s-p,(s)D(s)+S-po(s)+(K, +K,-s)-p,(s)Closed-loop Characteristic PolynomialP.(s)=S·po(s)+(K,+K,s)-P,(s)17Proportional-Integral control-EXAMPLEClosed-loopequationfor1storderopen-loopplantKss '(K, +K,s)Y(s) =·R(s) +s-(1+ts)+ Kss (K,+K,s)Kss*sD(s)一s-(1+ts)+K (K,+K,s)Steady-state error using the Final Value Theoremd(t)=ustep (t) - D(s)=1 / sUKss-0(t→0)=lm(s.Y(0)= 0.(1+T:0)+kg (K,+, 0)=0189
9 Generic linear plant 0 ( ) ( ) ( ) n p s G s p s = Closed-loop equation 0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i p n i p n n i p n K K s p s Y s R s s p s K K s p s s p s D s s p s K K s p s + ⋅ ⋅ = ⋅ + ⋅ + + ⋅ ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ 17 Closed-loop Characteristic Polynomial 0 ( ) ( ) ( ) ( ) c i p n p s s p s K K s p s = ⋅ + + ⋅ ⋅ Proportional-Integral control Closed-loop equation for 1st order open-loop plant ( ) ( ) ( ) (1 ) ( ) ( ) (1 ) ( ) SS i p SS i p SS SS i p K K K s Y s R s s s K K K s K s D s s s K K K s τ τ ⋅ + = ⋅ + ⋅ + + ⋅ + ⋅ + ⋅ ⋅ + + ⋅ + 18 Proportional-Integral control – EXAMPLE Steady-state error using the Final Value Theorem ( ) 0 ( ) ( ) ( ) 1/ 0 ( ) lim ( ) 0 0 (1 0) ( 0) step SS s SS i p d t u t D s s K y t s Y s → τ K K K = ⇔ = ⇓ ⋅ → ∞ = ⋅ = = ⋅ + ⋅ + ⋅ + ⋅

Proportional-Integral-Differential controlFullPID controllerequationK,+K,s+Kas?+K+K,s)E(s)=U(s)=/ K, +.E(s)SClosed-loop equation for 1st order open-loop plantKs(K, +K,S+K,s*) R(s)+ Ksss·D(s)Y(s) =(t+KssKa)s?+(1+KssK,)s+KssK,Proportional-DifferentialcontrolClosed-loop equationfor1storderopen-loopplantKss(K, +Kas)Y(s)=R(s)(t+KssK)s+(1+KssK,)KssD(s)(T+KssKa)s+(1+KssK,Steady-state error analysis using Final Value TheoremKssy(t→0)=1+Ksk,2010
10 Closed-loop equation for 1st order open-loop plant ( ) ( ) 2 2 ( ) ( ) ( ) ( ) 1 SS i p d SS SS d SS p SS i K K K s K s R s K s D s Y s τ K K s K K s K K + + ⋅ + ⋅ = + + + + 19 Proportional-Integral-Differential control Full PID controller equation 2 ( ) ( ) ( ) i i p d p d K K K s K s U s K K s E s E s s s + + = + + ⋅ = ⋅ Closed-loop equation for 1st order open-loop plant ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) 1 SS p d SS d SS p SS SS d SS p K K K s Y s R s K K s K K K D s K K s K K τ τ + = ⋅ + + + + ⋅ + + + 20 Proportional-Differential control Steady-state error analysis using Final Value Theorem ( ) 1 SS SS p K y t K K → ∞ = +
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《轮机仿真及控制技术》课程教学课件(讲稿)02 Applied control engineering mathematics.pdf
- 《高等路面设计理论》课程授课教案(讲义)Formulation Of Analytical Wet Weather Safety.doc
- 《高等路面设计理论》课程授课教案(讲义)System Identification Method for Backcalculating Pavement Layer Properties.pdf
- 《高等路面设计理论》课程授课教案(讲义)Pavement Roughness on Expansive Clays.doc
- 《高等路面设计理论》课程授课教案(讲义)Prediction of TyreRoad Friction.doc
- 《高等路面设计理论》课程授课教案(讲义)THE FOURIER TRANSFORM(扫描版).pdf
- 《船舶水动力学》课程教学课件(讲稿)第一章 运动方程及干模态分析 dry hull analysis symmetric.pdf
- 《船舶水动力学》课程教学课件(讲稿)第二章 规则波波浪理论 Regular waves.pdf
- 《船舶水动力学》课程教学课件(讲稿)第三章 二维水动力理论及切片理论 2D hydrodynamics Strip theory.pdf
- 《船舶水动力学》课程教学课件(讲稿)第五章 不规则波中水动力响应分析 Random seas.pdf
- 《船舶水动力学》课程教学课件(讲稿)第四章 规则波中对称水动力响应分析 EoM and responses in reg waves.pdf
- 《船舶与海洋工程结构风险评估》课程教学大纲 Structural Risk Assessment of Naval Architecture and Ocean Engineering.docx
- 《船舶安全与可靠性理论》课程教学课件(英文讲义)Safety and Reliability Analysis Lecture 5/5.pdf
- 《船舶安全与可靠性理论》课程教学课件(英文讲义)Safety and Reliability Analysis Lecture 4/5.pdf
- 《船舶安全与可靠性理论》课程教学课件(英文讲义)Safety and Reliability Analysis Lecture 3/5.pdf
- 《船舶安全与可靠性理论》课程教学课件(英文讲义)Safety and Reliability Analysis Lecture 2/5.pdf
- 《船舶安全与可靠性理论》课程授课教案(英文讲义)Safety and Reliability Analysis Lecture 1/5.pdf
- 《机械系统工况监测与故障诊断》课程教学课件(讲稿)第9章 液压系统的故障分析与诊断.pdf
- 《机械系统工况监测与故障诊断》课程教学课件(讲稿)第1章 概论.pdf
- 《机械系统工况监测与故障诊断》课程教学课件(讲稿)第6章 油液监测技术.pdf
- 《轮机仿真及控制技术》课程教学课件(讲稿)05 State-space modeling and control of ship propulsion.pdf
- 《轮机仿真及控制技术》课程教学课件(讲稿)04 Numerical Process Modeling of Marine Engines.pdf
- 《轮机仿真及控制技术》课程教学课件(讲稿)01 Marine engineering thermodynamics.pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Ballast Water Treatment Technologies(Current Status).pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Electric and Hybrid Propulsion.pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Modelling Emission Factors and Emission Indices.pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Tidal Energy.pdf
- 《轮机仿真及控制技术》课程授课教案(讲义)Mitigating Technologies for Cleaner Air.pdf
- 《油气运输船舶储运技术》课程教学大纲 Technology on Oil or Gas Transport Tanker.pdf
- 《油气运输船舶储运技术》课程授课教案(讲义,共十六章,武汉理工大学:王弢).pdf
- 《油气运输船舶储运技术》课程教学资源(实验指导)油气集输实验指导书.doc
- 《油气运输船舶储运技术》课程教学资源(实验指导)输油管路模拟实验指导书(油气储运专业用).doc
- 《油气运输船舶储运技术》课程教学资源(实验指导)小呼吸蒸发损耗实验实验指导书.doc
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第一章 船舶基础知识.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第二章 石油与运输.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第三章 现代油船船型特点(现代油运船舶布置及结构).ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第四章 现代油船的设备系统.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第八章 液化气船的设计及构造原则.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第五章 油船的安全管理.ppt
- 《油气运输船舶储运技术》课程教学资源(PPT课件)第七章 液化气体的危害特性.ppt