南京大学:《数值计算方法》课程教学资源(PPT课件)第七章 矩阵特征值和特征向量的数值解法 7.3.2 矩阵的QR分解 7.3.3 QR算法

7.32矩阵的QR分解 定理73.1设矩阵A∈R",且非奇异,则一定存在正交矩 阵Q,上三角矩阵R,使 A=OR (7.3.2) 且当要求R的主对角元素均为正数时,则分解式(732)是唯一的 证明存在性有矩阵A的非奇异性及 Householder变换矩 阵的性质(3)知,一定可构造n-1个H矩阵:H1,H2…Hn1使 H,AL (k=l, t 1)
7.3.2 矩阵的QR分解 定理 7.3.1 设矩阵 n n A R ,且非奇异,则一定存在正交矩 阵 Q,上三角矩阵 R,使 A = QR (7.3.2) 且当要求 R 的主对角元素均为正数时,则分解式(7.3.2)是唯一的。 证明 存在性 有矩阵 A 的非奇异性及 Householder 变换矩 阵的性质(3)知,一定可构造 n−1个 H 矩阵: 1 2 1 , , , H H Hn− 使 ( 1,2, , 1) Ak+1 = Hk Ak k = n −

其中A1=A,而 n a n) R n- n nn
其中 A1 = A,而 − − − = − − ( ) ( ) 1 1 ( ) 2 2 ( ) 1 ( ) 1 1 2 n n n n n n n n n n n n n a σ a σ a σ a a A R =

因此有 H.,H.…H,H,A=R 即有 A=OR 其中,Q=H1H2…Hn为正交矩阵
因此有 Hn−1 Hn−2 H2 H1 A = R 即有 A = QR 其中,Q = H1 H2 Hn−1 为正交矩阵

唯一性假设矩阵A有两种正交三角分解,即 A=QR=O,R2 其中,Q1,Q2为正交矩阵,R,R2为上三角矩阵,且 主对角元素均为正数。于是有 2102=rR2=D
唯一性 假设矩阵 A 有两种正交三角分解,即 A = Q1 R1 = Q2 R2 其中, 1 2 Q ,Q 为正交矩阵, 1 2 R , R 为上三角矩阵,且 主对角元素均为正数。于是有 Q Q R R D T − = = 1 1 2 1 2

这里,D必是既为正交矩阵又是上三角矩阵,故 D=dag(d1,d2,…dn) 且d2=1(=12.…,n),因此,R1=DR2,由于R,R 对角元均为正数,故 d1(;…,n),即有 D=1,R1=R2,Q1=Q2
这里,D 必是既为正交矩阵又是上三角矩阵,故 diag ( , , ) 1 2 n D = d d d 且 1( 1,2, , ) 2 di = i = n ,因此,R1 = DR2 ,由于 1 2 R , R 对 角 元 均 为 正 数 , 故 d 1(i 1,2, ,n) i = = ,即有 1 2 1 2 D = I,R = R ,Q = Q

例73.2设矩阵 A=2-1-1 2-45 试作矩阵A=QR分解。 解为直观起见,下面给出H矩阵形式
例 7.3.2 设矩阵 = 2 4 5 2 1 1 1 1 1 - A - - 试作矩阵 A = QR 分解。 解 为直观起见,下面给出 H 矩阵形式

(1)求H1,作A2=H1A。 1°G,=sign(分小 2l1=a1+O1=4,2=2,=(4,2,2) 3p1=a1=3×4=12 1-2-2 12 22-1
(1) 求 H1 ,作 A2 = H1 A。 1 sign ( )( ) 3; 2 3 1 1 2 1 = 11 1 = i= a ai 2 4, 2, (4,2,2) ; 1 11 1 2 T u = a + = u = u = 3 3 4 12; 1 =1 u1 = = = − = − 3 1 2 2 2 1 1 2 2 3 1 1 1 1 - - - - - - - H I uu T

A2=H1A=00-3 0-33 (2)求H2,作A3=H242=R 2=sgn(a2)∑ e(2)定Sgn(O)=1) 2l1=0,2=a2+a2=3,l3=a3)=-3,=(0,3,-3)
4 = = 0 3 3 0 0 3 3 3 3 2 1 - - - - A H A (2)求 H2 ,作 A3 = H2 A2 = R 1 sign ( )( ) 3 ( sign (0) 1); 2 2 (2) 2 (2) 2 2 2 2 = = = = 约定 i a ai ( ) 2 0, 3, 3, (0,3, 3) ; 2 2 3 3 2 (2) 1 2 2 2 T u = u = a + = u = a = − u = −

100 H2=1-p2 uu 001 010 A3=H242=0-3-3=R hH 221 由矩阵乘法可直接验证A=OR
3 9; 2 = 2 u2 = = − = − 0 1 0 0 0 1 1 0 0 3 1 1 2 2 H I uu T 4 - - R - - A H A = = = 0 0 3 0 3 3 3 3 3 3 2 2 − − − − − − = = 2 2 1 2 1 2 1 2 2 3 1 Q H1 H2 由矩阵乘法可直接验证 A = QR

7.3.3QR算法 设A=(an)∈R,QR算法是对A进行一系列的 正交相似变换,达到求出矩阵A的全部特征值和相应的 特征向量。算法如下 分解:A=QR 构造:A1=QAQk=RQA(k=1,2,3,) 这里Qk为正交矩阵,Rk为上三角矩阵,且当Rk主对角 元均为正数时,则上述正交三角分解唯
7.3.3 QR算法 设 n n A aij R = ( ) ,QR 算法是对 A 进行一系列的 正交相似变换,达到求出矩阵 A 的全部特征值和相应的 特征向量。算法如下: 分解: Ak = Qk Rk 构造: ( 1,2,3,...) A +1 = Q Ak Qk = Rk Qk k = T k k 这里 Qk 为正交矩阵,Rk 为上三角矩阵,且当 Rk 主对角 元均为正数时,则上述正交三角分解唯一
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第七章 矩阵特征值和特征向量的数值解法 7.1 幂法 7.2 Jacobi法 7.3 QR算法.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第6章 常微分方程数值解法.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第5章 数值积分 5.4 Gauss求积公式 5.5 数值微分.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第5章 数值积分 5.1 Newton-Cotes求积公式 5.2 复化求积公式 5.3 Romberg求积公式.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第4章 函数逼近的插值法与曲线拟和法 4.4 三次样条插值 4.5 曲线拟和的最小二乘法.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第4章 函数逼近的插值法与曲线拟和法 4.2.2 Newton插值公式 4.2.3 等距节点Newton插值公式 4.3 Hermite插值.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第4章 函数逼近的插值法与曲线拟和法 4.1 Lagrange插值法 4.2 Newton插值法.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第3章 解线性方程组的数值解法 3.4 向量和矩阵的范数 3.5 病态方程组与矩阵的条件数 3.6 解线性方程组的迭代法.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第3章 解线性方程组的数值解法 3.2 矩阵的三角分解法 3.3 矩阵求逆.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第3章 解线性方程组的数值解法 3.1 高斯消元法.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第2章 非线性方程与方程组的数值解法.ppt
- 南京大学:《数值计算方法》课程教学资源(PPT课件)第1章 绪论(刘玲).ppt
- 《线性代数》课程教学资源(PPT讲稿)逆序数n阶行列式的定义.ppt
- 《线性代数》课程教学资源(PPT讲稿)克莱姆法则(克拉默法则).ppt
- 《线性代数》课程教学资源(PPT讲稿)矩阵的分块、矩阵的初等变换与标准形(初等行变换)、矩阵的秩概念.ppt
- 《线性代数》课程教学资源(讲稿)行列式.doc
- 《线性代数》课程教学资源(PPT讲稿)逆矩阵.ppt
- 《线性代数》课程教学资源(PPT讲稿)矩阵(复习).ppt
- 《线性代数》课程教学资源(PPT讲稿)逆矩阵.ppt
- 《线性代数》课程教学资源(PPT讲稿)克拉默法则.ppt
- 《数学建模》课程教学资源:1997年全国大学生数学建模竞赛题目.doc
- 《数学建模》课程教学资源:1998年全国大学生数学建模竞赛题目.doc
- 《数学建模》课程教学资源:1999创维杯全国大学生数学建模竞赛题(大专组).doc
- 《数学建模》课程教学资源:1999创维杯全国大学生数学建模竞赛题目.doc
- 《数学建模》课程教学资源:2000网易杯年全国大学生数学建模竞赛题目(大专组).doc
- 《数学建模》课程教学资源:2000网易杯年全国大学生数学建模竞赛题目.doc
- 《数学建模》课程教学资源:2001年全国大学生数学建模竞赛题(大专组).doc
- 《数学建模》课程教学资源:2001年全国大学生数学建模竞赛题目.doc
- 《数学建模》课程教学资源:2001年全国大学生数学建模夏令营数学建模题目.doc
- 《数学建模》课程教学资源:2002全国大学生数学建模竞赛题目AB.doc
- 《数学建模》课程教学资源:2002全国大学生数学建模竞赛题目CD.doc
- 《数学建模》课程教学资源:2003年全国大学生数学建模竞赛题目A.doc
- 《数学建模》课程教学资源:2003年全国大学生数学建模竞赛题目B.doc
- 《数学建模》课程教学资源:2003年全国大学生数学建模竞赛题目C.doc
- 《数学建模》课程教学资源:2003年全国大学生数学建模竞赛题目D.doc
- 中国水利水电出版社:《线性代数》课程教学资源(PPT课件)第02章 矩阵.ppt
- 中国水利水电出版社:《线性代数》课程教学资源(PPT课件)第01章 行列式(牛莉).ppt
- 中国水利水电出版社:《线性代数》课程教学资源(PPT课件)第03章 向量组的线性相关性.ppt
- 中国水利水电出版社:《线性代数》课程教学资源(PPT课件)第04章 线性方程组.ppt
- 中国水利水电出版社:《线性代数》课程教学资源(PPT课件)第05章 相似矩阵.ppt