《理论力学》课程教学资源(英文复习)Review Problems For Theoretical Mechanics

Review ProblemsFor Theoretical MechanicsEditedbyTheDepartmentofMechanics2019.11
Review Problems For Theoretical Mechanics Edited by The Department of Mechanics 2019.11

StaticsEp1.Known:P.a,theweightandfrictionof eachmember arenot counted:Findtheconstraint reactionatAandBSOLUTION:Firstly, take the whole as the research objectanditsforcediagramisshowninthefigure(a)P(b)(c)(a)Ep1[Analysis]: There are altogether four unknown forces in this force diagram, all ofwhich are required constraint forces. There are only three independent equilibriumequations, so it is impossible to solve all of them. But by taking the moment of A or BWwe can solve for Fay or Fgy first.1Zms(F)=0From-2axFAy-Pxa=0weget:Fay23ZY=0FAy +FBy -P=0we get:FByTaketherodEC,and itsforce isshown inFigure3.1 (c),fromZmc(F)=0FResin45°xa-Pxa=0FRE=/2PWe obtainTake bar AED, and its force diagram is shown in Fig.3.1 (b), from2a×FAx-2a×F4y-2a×FRE=0Zm,(F)=0PWe getFAx:2For the overall force figure 3.1 (a), from
Statics Ep 1. Known: P, a, the weight and friction of each member are not counted; Find the constraint reaction at A and B. SOLUTION: Firstly, take the whole as the research object, and its force diagram is shown in the figure (a). [Analysis]: There are altogether four unknown forces in this force diagram, all of which are required constraint forces. There are only three independent equilibrium equations, so it is impossible to solve all of them. But by taking the moment of A or B, we can solve for FAY or FBY first. From mB (F) = 0 − 2a FAY − P a = 0 we get: FAY P 2 1 = − Y = 0 FAY + FBY − P = 0 we get: FBY P 2 3 = Take the rod EC, and its force is shown in Figure 3.1 (c), from mC (F) = 0 FRE sin 45 a − P a = 0 We obtain FRE = 2P Take bar AED, and its force diagram is shown in Fig. 3.1 (b), from mD (F) = 0 2a FAx − 2a FAy − 2a FRE = 0 We get 2 P FAx = For the overall force figure 3.1 (a), from

ZX=0FAx + Fx = 0PFBx = -we get2Exercise: Known: P, a, the weight and frictionof each member are not counted;Calculatethe constraint reaction atA,BandE.EAB工R力a-Qa--a→人→EP补DUMD:1534777772:
X = 0 FAx + FBx = 0 we get 2 P FBx = − Exercise: Known: P, a, the weight and friction of each member are not counted; Calculate the constraint reaction at A, B and E

Ep2.Known:P=10kN, q=2kN/m, M=2kN·m, a=1m, the weight andfriction of eachmemberarenotcounted;CalculatetheconstraintreactionatASOLUTION:Firstly,takethewholeastheresearchobject,and its stress is shown inFigure2 (a)fLFoyFosForCPP1DDcEM-BFFMFFaB9F(a)(b)(c)Ep 21ZX=0FAx +=x×3q×3a-qa=02We getFx =-7kNTake thebar CE,and itsforcediagram is shown inFIG.3.2 (c),fromZm.(F)=0F,cos45°xa+Pxa-M=0We getF,cos45°=-8kNZY=0FromFesin45°-F,=0Fg, =-8kNgetTake the component BCD.and its force diagram is shown in Figure 3.2 (b),froma=0Zm,(F)=0Fxa+Fc,xa-qax2GetFB=9kNForthewhole,fromZY=0FA, +Fs =0GetFAy=-9kN
Ep 2. Known:P=10kN,q=2kN/m, M=2kN·m, ɑ=1m, the weight and friction of each member are not counted; Calculate the constraint reaction at A. SOLUTION: Firstly, take the whole as the research object, and its stress is shown in Figure 2 (a). X = 0 3 3 0 2 1 FAx + q a − qa = We get FAx = −7kN Take the bar CE, and its force diagram is shown in FIG. 3.2 (c), from m (F) = 0 c FE cos45 a + P a − M = 0 We get FE cos45 = −8kN From Y = 0 FE sin 45 − FCy = 0 get FCy = −8kN Take the component BCD, and its force diagram is shown in Figure 3.2 (b), from mD (F) = 0 0 2 + − = a FB a FCy a qa Get FB = 9kN For the whole, from Y = 0 FAy + FB = 0 Get FAy = −9kN Ep 2

1aFromZm(F)=0MA+aFB-M+qax=×3q×3axa=022M,=1kN·mgetBA?Exercise: Known: AB=BC=CD=a. The material weight is P,and the weight of pulley and each bar is not counted. Find theAconstraintreactionatES45
From mA (F) = 0 3 3 0 2 1 2 + − + − q a a = a M A aFB M qa get M A = 1kN m Exercise:Known:AB=BC=CD=ɑ. The material weight is P, and the weight of pulley and each bar is not counted. Find the constraint reaction at E

Ep 3. Known: P, 1, R, Each bar and pulley shall be excluded; Find the constraintreactionatfixedendAFaFM0(b)(c)Ep 3SOLUTION:TaketheCDrod(includingthepulley)astheresearchobject,anditsforceisshowninFigure(b),fromZm,(F)=0FcB×21+F(1+R)-PR= 0PWe getFcB =2Take rod AB and its force diagram is shown in Figure (c), fromZX=0FA+FBC+F=0PWe getFx =2FromZY=0FA,=0Zm,(F)=0MA-F(1+R)-FBc×21=0We getM =PRExercise:Known:g=500N/m,P=2000N,M=500Nm,a=lm,Not countingtheweight of eachpoleCalculate:theforceofABbaronCDbaratBE
Ep 3. Known: P, l, R, Each bar and pulley shall be excluded; Find the constraint reaction at fixed end A. SOLUTION: Take the CD rod (including the pulley) as the research object, and its force is shown in Figure (b), from mD (F) = 0 FCB 2l + FT (l + R) − PR = 0 We get 2 P FCB = − Take rod AB and its force diagram is shown in Figure (c), from X = 0 FAx + FBC + FT = 0 We get 2 P FAx = − From Y = 0 FAy = 0 mA (F) = 0 MA − FT (l + R) − FBC 2l = 0 We get M A = PR Exercise: Known: q = 500N / m,P = 2000N,M = 500Nm,a =1m, Not counting the weight of each pole. Calculate: the force of AB bar on CD bar at B. Ep 3

Ep4.Known:P,a, M=Pa,Notcounting the weight of eachpoleFind the constraint reaction at support ACand D.BMDSOLUTION:Firstly, BC bar is taken as the object ofstudy, and its force diagram is shown inFigure(c),fromZmc(F)=0-F×2a+Pa-M=0We getFby = 0CB7M公FFAFAxa20T(b)(a)FrFeFcFeNFcFtyMpCBMDFix(d)(c)Ep 4Finally, take the CD rod as the research object, and the force is shown in Figure (d),PZX=0-Fc+FDx=0getFpx=2ZY=0Fd, = PFdy-Fo, =0get
Ep 4. Known: P ,a,M = Pa ,Not counting the weight of each pole. Find the constraint reaction at support A and D. SOLUTION: Firstly, BC bar is taken as the object of study, and its force diagram is shown in Figure (c), from mC (F) = 0 − FBy 2a + Pa − M = 0 We get FBy = 0 取折杆 AB 为研究对象,受力如图(b)所示,由 Y = 0 FAy − P − FBy = 0 得 FAy = P mB (F) = 0 − FAy 2a + Pa + FAx 2a = 0 得 2 P FAx = X = 0 FAx + FBx = 0 得 2 P FBx = − 取 BC 为研究对象,受力图(c),由 X = 0 − FBx + FCx = 0 得 2 P FCx = − Y = 0 FBy + FCy − P = 0 得 FCy = P Finally, take the CD rod as the research object, and the force is shown in Figure (d), X = 0 − FCx + FDx = 0 get 2 P FDx = − Y = 0 FDy − FCy = 0 get FDy = P Ep 4

Zmp(F)=0M,+2aFα+2aF,=0get Mp =-PaExercise:Known:AB=2BC=2CD=2m,q=2000N/m,XDM=500Nm, Each rod is homogeneous and itsweight per unit length is 500N/m.Calculate: Constraint reaction at A.WM29
mD (F) = 0 MD + 2aFCx + 2aFcy = 0 get M Pa D = − Exercise: Known: AB=2BC=2CD=2m,q=2000N/m, M=500Nm, Each rod is homogeneous and its weight per unit length is 500N/m. Calculate: Constraint reaction at A

Ep 5.Determine thex andycomponents ofeach of theforces shown.U28mm84mm96 mm50N80mm29NO51N90 mm-48mm-SOLUTIONo.Compute the following distances:OA=(84)2+(80)2SON=116 mmOB= (28)2 +(96)2.51N=100mmOC=/(48)2 +(90)2=102mm84F,=+(29 N)F,=+21.0N29-NForce:11680F, = +(29 N)-F, =+20.0 N11628F=-(50 N)F,=-14.00N50-NForce:10096F, =+(50 N),F, =+48.0 N10048F=+(51N),F,=+24.0N51-NForce:10290F, = (51 N)F, =-45.0 N102
Ep 5

Ep 6.Knowing that α =35°, determine the resultant of the threeforces shown.aa30%100N200N150NSOLUTIONF,=+(100N)c0s35°=+81.915N100-N Force:F, = -(100 N)sin35°= -57.358 N150-NForce:F,=+(150N)cos65°=+63.393NF, = (150 N)sin 65°= 135.946 NF,=(200N)cos35°=163.830N200-NForce:F, = (200 N)sin35°= 114.715 NForcex Comp. (N)yComp. (N)100N+81.91557.358150N+63.393135.946200N163.830114.715R, =18.522R, =308.02R=Ri+R,jR,=-18.522j=(18.522 N)i + (308.02 N)jRtanα=R.308.0218.522Ry= -308.02jα=86.5590K308.02 NR=R=309N786.6°sin 86.559
Ep 6
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等岩石力学》课程教学资源(PPT课件)0 绪论 Advanced Rock Mechanics.pptx
- 《高等岩石力学》课程教学资源(PPT课件)1 岩石与岩体的力学特性.pptx
- 《高等岩石力学》课程教学资源(PPT课件)4 岩石流变力学——本构模型.pptx
- 《高等岩石力学》课程教学资源(PPT课件)3 地应力及其测量原理.pptx
- 《高等岩石力学》课程教学资源(PPT课件)2 岩石的强度理论与弹塑性本构模型.pptx
- 《高等岩石力学》课程教学资源(PPT课件)4 岩石流变力学.pptx
- 《高等岩石力学》课程教学资源(PPT课件)5 岩体工程中的反分析方法.pptx
- 《高等岩石力学》课程教学资源(PPT课件)8 相似模型试验.pptx
- 《高等岩石力学》课程教学资源(PPT课件)9 岩石力学研究新进展.pptx
- 电子工业出版社:《材料力学》课程书籍教材PDF电子版(材料力学电子教材)Mechanics of MaterialsⅠ(教材勘误).pdf
- 电子工业出版社:《材料力学》课程书籍教材PDF电子版(材料力学电子教材)Mechanics of MaterialsⅠ(主编:汪越胜、梁小燕).pdf
- 《材料力学》课程教学课件(讲稿)绪论(北京交通大学:陈阿丽).pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.1 拉压杆的内力与应力.pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.2 材料在拉伸与压缩时的力学性能.pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.3 轴向拉压变形分析.pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.5 拉压杆件的超静定问题.pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.5 拉压杆件的超静定问题 2.6 拉压杆件的应变能 2.7 连接部分的强度计算.pdf
- 《材料力学》课程教学课件(讲稿)第三章 扭转 3.1 扭转的概念和内力计算 3.2 薄壁圆筒扭转.pdf
- 《材料力学》课程教学课件(讲稿)第三章 扭转 3.2 圆轴扭转时的应力计算和强度设计 3.3 圆轴扭转时的变形计算和刚度设计.pdf
- 《材料力学》课程教学课件(讲稿)第三章 扭转 3.3 圆轴扭转时的变形计算和刚度设计.pdf
- 《流体力学》课程教学资源(英文复习)Review Problems for Fluid Mechanics.pdf
- 《弹性力学》课程教学课件(英文讲稿)Chapter 1 Introduction Elasticity.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 2 The Basic Theory of the Plane Problem.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 3 Plane Problems in Rectangular Cordinates.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 4 Polar Solutions for Planar Problems.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 7 The Basic Theory of the Plane Problem.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 8 The Solution of the Space Problem.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 01 Fundamental principles of statics and force analysis.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 10 Basic equations of particle dynamics.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 11 Momentum theorem.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 12 Theorem of moment of momentum.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 13 Theorem of kinetic energy.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 14 D'alembert's principle.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 15 Principle of virtual displacement.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 02 Planar Concurrent Force System and Plane Couples.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 03 Plane General Force System.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 04 Friction(上海交通大学:王晓君).ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 05 Space mechanics.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 06 Kinematics of Points.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 07 Basic motion of rigid body.pptx
