《流体力学》课程教学资源(英文复习)Review Problems for Fluid Mechanics

Review Problemsfor Fluid MechanicsEdited byThe Department of Mechanics2019.042
2 Review Problems for Fluid Mechanics Edited by The Department of Mechanics 2019.04

Chapter 1Introductionand Properties ofFluids1-1,Determine the change in the density of oxygen whenthe absolute pressure changes from 345kPa to286kPa,while thetemperatureremains constant at 25°C.This is calledanisothermalprocess.SOLUTIONApplying the ideal gas law with T,= (25C +273)K= 298 K,pi=345kPa andR=259.8J/kg·Kforoxygen (table inAppendixA),345(103)N/m2= pi(259.8J/kg·K)(298 K)PI=p/RTI;pi=4.4562kg/mFor p2=286kPa andT2=T,=298K,286(10)N/m2= p2(259.8J/kg·K)(298 K)P2=p2RT2p2=3.6941kg/m2Thus, the change in density isAp=p2-pl=3.6941kg/m2-4.4562kg/mAns.=-0.7621kg/m2m-0.762kg/m2The negative sign indicates a decrease in densityn
3 Chapter 1 Introduction and Properties of Fluids 1-1. Thus, the change in density is

1-2.Anexperimental testusinghumanbloodatT=30°Cindicates that it exerts a shear stress of =0.15 N/monsurface A,where the measured velocity gradient is 16.8 s-Since blood is a non-Newtonian fluid,determine its apparentviscosity at A.SOLUTIONduHere,= 16.8 s-" and ↑ = 0.15 N/m2. Thus,dydu0.15N/m2=μa(16.8s-)T=podyMa= 8.93(10-3)N ·s/m2Ans.Realize thatblood is a non-Newtonian fluid.For this reason,wearecalculating theapparent viscosity.4
4 1-2

1-3.When theforcePis appliedtotheplate,thevelocityprofile for a Newtonian fluid that is confined under the plateis approximated by u= (4.23y/3)mm/s, where y is in mm.Determinetheshear stresswithinthefluid aty=5mm.Take μ= 0.630(10~3) N·s/m2SOLUTIONSince the velocity distribution is not linear,the velocity gradient varies with y.u = (4.23yl/3) mm/s崇 [6(423)-23]-1+dyAty=5mm,du1.41=0.4822 s-152/3dyThe shear stress isdu= [0.630(103) N s/m2] 0.4822 s-1T=μdy=0.3038(10-3) N/m2=0.304mPaduNote:When y=O,00andsoT→00.dyat this point.Hence,Theequation cannotbeapplied at this point.5
5 1-3

1-4.Ifthekinematicviscosityofglycerinisv=1.15(10-)m/s,determineitsviscosityinFPSunits.Atthe temperature considered,glycerin has a specific gravityofS,=1.26.SOLUTIONThe density of glycerin isPg=SgPw=1.26(1000kg/m)=1260kg/m3Then,ugHly1.15(10-3)m2/s=Vg=1260kg/mPg ()())/=0.03026b·s/ft=0.03031bs/ftAns.6
6 1-4

1-5.IfaforceofP=2Ncausesthe30-mm-diameter50mmshaft to slide along the lubricated bearing with a constantspeed of 0.5 m/s, determine the viscosity of the lubricant0.5m/sand the constant speed of the shaft when P=8N.AssumePthe lubricant is a Newtonian fluid and the velocity profilebetween the shaftand thebearing is linear.The gap betweenthebearing andthe shaftis 1mm.SOLUTIONSince the velocity distribution is linear,the velocitygradient willbe constant.duT=Hdy2N(0.5m/s)=E[2m(0.015 m)](0.05 m)(0.001m)μ= 0.8498 N·s/mAns.Thus,8N= (0.8488N·s/m2)[2(0.015m)(0.05m)(0.001m)Ans.w=2.00m/sAlso,byproportion,(0.5m/s)(2N)At(8N)?MAt+m/s=2.00m/sAns.V=7
7 1-5. SOLUTION

AP1-6.8mm)Jic6mmHY5Aplasticstriphavingawidthof0.2mandamassof150gpasses between twolayersAandBofpainthavinga viscosity of5.24N·s/m?.Determine theforcePrequiredto overcome theviscous frictionon each sideifthe strip0.30 mmoves upwards at aconstantspeedof 4mm/s.Neglectany福friction at the top and bottom openings,and assume the7W = 0.15(9.81)Nvelocity profile through each layer is linear.EVFB(a)SOLUTIONSince the velocity distribution is assumed to be linear,the velocity gradient willbeconstant.For layers Aand B,4mm/s4mm/s(du)du=0.5s-=0.66675s18mmdy)6mm(dy/The shear stresses acting on the surfaces in contact with layers A and B aredu= (5.24Ns/m2)(0.5 s-l)= 2.62N/m2TA=Adydu= (5.24N·s/m)(0.6667s-l)= 3.4933N/mTB=ALdyThus, the shearforces acting on the contact surfaces areFA=TAA=(2.62N/m)[(0.2m)(0.3m)l=0.1572NF= TgA= (3.4933N/m)[(0.2m)(0.3 m) =0.2096 NConsidertheforceequilibriumalongyaxis fortheFBDofthestrip,Figa+1EF=0:P-0.15(9.81)N-0.1572N-0.2096N=0P=1.8383N=1.84NAns.00
8 1-6

1-7.The read-write head for a hand-heldmusic playerhasasurfaceareaof 0.04mm.Thehead isheld0.04μmabovethedisk, whichisrotating at a constant rate of1800 rpm.Determine the torqueT that must be applied to8mmthe disk to overcome the frictional shear resistance of theair between the head and the disk.The surrounding airis at standard atmospheric pressure and a temperature ofT20°C.Assume thevelocityprofileis linearSOLUTIONSince thevelocity distribution is assumed to be linear,the velocitygradient will beconstant.For layers Aand B,.4mm/s4mm/sdu= 0.5 s- (芸)s = 0.6675 s-8mm6mmdy)A(dy/BTheshearstressesactingonthesurfaces incontact withlayersAand Baredu= (5.24 N·s/m2)(0.5 s-1) =2.62N/m2TA=u(dy/Adu= (5.24N·s/m2)(0.6667s-l) = 3.4933N/m2TB=μdyThus,theshearforces acting onthecontact surfaces areFA= TAA = (2.62N/m)[(0.2 m)(0.3 m)I = 0.1572 NF=TA=(3.4933N/m)[(0.2m)(0.3m))=0.2096NConsidertheforceequilibrium alongyaxisfortheFBDofthestripFig.a.P-0.15(9.81)N-0.1572N-0.2096N=0+1F,=0;P=1.8383N=1.84NAns.9
9 1-7

1-8.The verythin tube A of mean radius rand length L isplacedwithinthefixed circularcavityas shown.Ifthecavityhasasmallgapof thicknesstoneach sideofthetube,and isfilled with a Newtonian liquidhavinga viscosityμ,determinethe torque T required to overcome the fluid resistance androtatethetubewithaconstantangularvelocityofw.Assumethevelocityprofile within the liquid is linear.SOLUTIONSince the velocity distribution is assumed to be linear,the velocity gradient will beconstant.F=2muorLdu.T=HMdy(or)=μtOConsidering the moment equilibrium of the tube,Fig.a,EM=0;T-2Ar=0(a)(or)T = 2(μ)(2mrL)-4murLT=Ans.t10
10 1-8

1-9.4.5rad/s40mrThetuberests ona1.5-mmthinfilm of oil havingaviscosityofμ=0.0586N·s/m.Ifthetubeisrotatingataconstantangularvelocityofo=4.5rad/s,determinethe801torqueTthat must be appliedtothetubetomaintainthemotion.Assume the velocityprofile within the oil is linearSOLUTIONOil is a Newtonian fluid.Sincethevelocity distribution is linear,the velocitygradientwill be constant.The velocity of the oil in contact with the shaft at an arbitrary pointis U=or.Thus.dy1du_MorT=Hdy1Thus, the shear force the oil exerts on the differential clementof area dA=2r drshownshadedinFig-ais2mue(2ardr)r-drdF-TdA--Considering the moment equilibrium of the tube about point D,FardF-T=0C+EMo=0;2auoT-rdF:rd2uoTuO(ra-)21Substitutingthenumerical values,(0.0586N·s/m)(4.5rad/s)(0.08%-0.04)T=2[1.5 (10-)m]=0.01060N·m=0.0106N·mAns.11
11 1-9
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《理论力学》课程教学资源(英文复习)Review Problems For Theoretical Mechanics.pdf
- 《高等岩石力学》课程教学资源(PPT课件)0 绪论 Advanced Rock Mechanics.pptx
- 《高等岩石力学》课程教学资源(PPT课件)1 岩石与岩体的力学特性.pptx
- 《高等岩石力学》课程教学资源(PPT课件)4 岩石流变力学——本构模型.pptx
- 《高等岩石力学》课程教学资源(PPT课件)3 地应力及其测量原理.pptx
- 《高等岩石力学》课程教学资源(PPT课件)2 岩石的强度理论与弹塑性本构模型.pptx
- 《高等岩石力学》课程教学资源(PPT课件)4 岩石流变力学.pptx
- 《高等岩石力学》课程教学资源(PPT课件)5 岩体工程中的反分析方法.pptx
- 《高等岩石力学》课程教学资源(PPT课件)8 相似模型试验.pptx
- 《高等岩石力学》课程教学资源(PPT课件)9 岩石力学研究新进展.pptx
- 电子工业出版社:《材料力学》课程书籍教材PDF电子版(材料力学电子教材)Mechanics of MaterialsⅠ(教材勘误).pdf
- 电子工业出版社:《材料力学》课程书籍教材PDF电子版(材料力学电子教材)Mechanics of MaterialsⅠ(主编:汪越胜、梁小燕).pdf
- 《材料力学》课程教学课件(讲稿)绪论(北京交通大学:陈阿丽).pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.1 拉压杆的内力与应力.pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.2 材料在拉伸与压缩时的力学性能.pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.3 轴向拉压变形分析.pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.5 拉压杆件的超静定问题.pdf
- 《材料力学》课程教学课件(讲稿)第二章 拉伸压缩与剪切 2.5 拉压杆件的超静定问题 2.6 拉压杆件的应变能 2.7 连接部分的强度计算.pdf
- 《材料力学》课程教学课件(讲稿)第三章 扭转 3.1 扭转的概念和内力计算 3.2 薄壁圆筒扭转.pdf
- 《材料力学》课程教学课件(讲稿)第三章 扭转 3.2 圆轴扭转时的应力计算和强度设计 3.3 圆轴扭转时的变形计算和刚度设计.pdf
- 《弹性力学》课程教学课件(英文讲稿)Chapter 1 Introduction Elasticity.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 2 The Basic Theory of the Plane Problem.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 3 Plane Problems in Rectangular Cordinates.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 4 Polar Solutions for Planar Problems.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 7 The Basic Theory of the Plane Problem.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 8 The Solution of the Space Problem.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 01 Fundamental principles of statics and force analysis.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 10 Basic equations of particle dynamics.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 11 Momentum theorem.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 12 Theorem of moment of momentum.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 13 Theorem of kinetic energy.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 14 D'alembert's principle.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 15 Principle of virtual displacement.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 02 Planar Concurrent Force System and Plane Couples.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 03 Plane General Force System.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 04 Friction(上海交通大学:王晓君).ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 05 Space mechanics.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 06 Kinematics of Points.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 07 Basic motion of rigid body.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 08 Composite motion of points.pptx
