《理论力学》课程教学资源(PPT课件,英文)Chapter 11 Momentum theorem

THEORYMECHANICSChapter11MomentumtheoremCollege of Mechanical and Vehicle EngineeringWangXiaojun
College of Mechanical and Vehicle Engineering WangXiaojun THEORY MECHANICS Chapter11 Momentum theorem

Chapter11 Momentumtheorem11.1momentum11. 2momentum theorem11.3The center of mass motion theorem
• 11. 1 momentum • 11. 2 momentum theorem • 11. 3 The center of mass motion theorem Chapter11 Momentum theorem

$11.1momentum1 momentum: P=mvsize: mv ;1.1 Momentum of particle:The direction is determined by :unit: kg?m /sP=Zm,Vi1.2 Momentumoftheparticle systemM=≥The total mass of the particle system ismm,r2Mr.=-Zmrm
1 momentum 1.1 Momentum of particle: P = mv size: ; The direction is determined by ; unit: kgm /s v mv The total mass of the particle system is: M = mi c = i i M r m r 1.2 Momentum of the particle system: = i i P m v = i i i c m m r r §11.1 momentum

$11.1 momentumMv.=ZmyAfterderivationtoP= MveThatis,the productof the mass of a system of particles and the velocityofits centerofmassequalsthemomentumofthesystem ofparticlesP= mv= mxCalculation method:XcxCprojection methodP= mv= myJcyp:= mv= mzCz
P = Mvc That is, the product of the mass of a system of particles and the velocity of its center of mass equals the momentum of the system of particles. After derivation to = i i M vc m v Calculation method: projection method X cx c P = mv = mx y cy c P = mv = my z cz c P = mv = mz §11.1 momentum

$11.1 momentumExamplel: As shown in the figure, it is known that the mass of crank OC isM, the mass of gauge AB is 2m, and the mass of slider A and B are mboth,OC=CA=CB= l. Find the momentum of the ellipse gauge as the crankrotates at angular velocity at the indicated position.VAAPSolution:Take thewholerigidbody system as the researchVcobject.Themomentumofthewhole system isVB0B
Example1:As shown in the figure, it is known that the mass of crank OC is M, the mass of gauge AB is 2m, and the mass of slider A and B are both,OC=CA=CB= . Find the momentum of the ellipse gauge as the crank rotates at angular velocity at the indicated position. m l C A B O P v A v B vC Solution: Take the whole rigid body system as the research object.The momentum of the whole system is §11.1 momentum

S11.1momentumPx = -mv, cos(90° - ot)- 2mv, cos(90° -ot)-m'v5m + 4m')lo sin 0t2(5m+4m)lp=p?+p, =, = my, sin (90° - ot)+ 2mv, sin (90° - ot)+ m'vC5m + 4m')l@ cos ot2p, cot ottan αp
( ) ( ) ( m m )l t p mv t mv t m v x B 5 4 sin 2 1 1 cos 90 2 2 cos 90 = − + = − − − − − p = px + py = (5m + 4m )l 2 2 2 1 ( ) ( ) ( m m )l t p m v t m v t m v y A 5 4 cos 2 1 1 sin 90 2 2 sin 90 = + = − + − + t p p x y tan = = cot §11.1 momentum

$11.1momentum2. impulsei=Ft2.1lmpulseofa constantforce:2.2ImpulseofvariableforceImpulseofelement:impulseofvariableforceinmicrotimeperiod; That is:di = FdtThen the impulse of the force in the time period (t, -t, )isi = ( Fdtunit: N.st
2. impulse 2.1 Impulse of a constant force: I Ft = 2.2 Impulse of variable force d d I F t = Impulse of element: impulse of variable force in micro time period; That is: Then the impulse of the force in the time period is: ( ) 1 2 t −t 2 1 t t I F t = d unit:N·s §11.1 momentum

$ 11.2 momentumtheorem1. Momentum theorem for particlesF=maNewton's second lawdi:F=ma=mdt..d(mv)= F.dtwhen m is constant-Differentialequationof themomentumtheoremThat is, the momentum increment of the particle is equal tothe elemental impulse of the force acting on the particle
1. Momentum theorem for particles Newton's second law F ma = = d mv F dt ( ) dv F ma m dt = = -Differential equation of the momentum theorem That is, the momentum increment of the particle is equal to the elemental impulse of the force acting on the particle. §11.2 momentum theorem when m is constant

$ 11.2 momentum theoremTime period: t, →t, Speed change: V, →>V,d(mv)= F.dtIntegrate the formula:mV, - mVi = f" F . dt = I - The integral fthe momentumtheoremThat is, in a certain time interval, the change in momentum oftheparticle is equal to the impulse of the force acting on the particleduring this period
1 2 t →t 1 2 Time period: Speed change: v →v Integrate the formula: d mv F dt ( ) = 2 1 2 1 t t mv mv F dt I − = = -The integral of the momentum theorem That is, in a certain time interval, the change in momentum of the particle is equal to the impulse of the force acting on the particle during this period. §11.2 momentum theorem

$11.2 momentumtheoremExample2 Heavy hammer Q = 300 N, free fall from height H = 1.5 m forging, asshown in figure, forging deformation occurs, for t = 0.01 s for hammer averagepressure of forgings.Solution: Take the hammer as the research object. Theforce acting on the hammer is the counterforceof thehforging after the q-hammer and the forging contact. Butthe reaction force of the forging is variable. Set anaverage reaction of n. time needed for hammer dropheight H T as follows:2H1g
Example2 Heavy hammer Q = 300 N, free fall from height H = 1.5 m forging, as shown in figure, forging deformation occurs, for t = 0.01 s for hammer average pressure of forgings. Solution: Take the hammer as the research object. The force acting on the hammer is the counterforce of the forging after the q-hammer and the forging contact. But the reaction force of the forging is variable. Set an average reaction of n. time needed for hammer drop height H T as follows: h g H T 2 = §11.2 momentum theorem
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 10 Basic equations of particle dynamics.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 01 Fundamental principles of statics and force analysis.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 8 The Solution of the Space Problem.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 7 The Basic Theory of the Plane Problem.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 4 Polar Solutions for Planar Problems.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 3 Plane Problems in Rectangular Cordinates.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 2 The Basic Theory of the Plane Problem.ppt
- 《弹性力学》课程教学课件(英文讲稿)Chapter 1 Introduction Elasticity.ppt
- 《流体力学》课程教学资源(英文复习)Review Problems for Fluid Mechanics.pdf
- 《理论力学》课程教学资源(英文复习)Review Problems For Theoretical Mechanics.pdf
- 《高等岩石力学》课程教学资源(PPT课件)0 绪论 Advanced Rock Mechanics.pptx
- 《高等岩石力学》课程教学资源(PPT课件)1 岩石与岩体的力学特性.pptx
- 《高等岩石力学》课程教学资源(PPT课件)4 岩石流变力学——本构模型.pptx
- 《高等岩石力学》课程教学资源(PPT课件)3 地应力及其测量原理.pptx
- 《高等岩石力学》课程教学资源(PPT课件)2 岩石的强度理论与弹塑性本构模型.pptx
- 《高等岩石力学》课程教学资源(PPT课件)4 岩石流变力学.pptx
- 《高等岩石力学》课程教学资源(PPT课件)5 岩体工程中的反分析方法.pptx
- 《高等岩石力学》课程教学资源(PPT课件)8 相似模型试验.pptx
- 《高等岩石力学》课程教学资源(PPT课件)9 岩石力学研究新进展.pptx
- 电子工业出版社:《材料力学》课程书籍教材PDF电子版(材料力学电子教材)Mechanics of MaterialsⅠ(教材勘误).pdf
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 12 Theorem of moment of momentum.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 13 Theorem of kinetic energy.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 14 D'alembert's principle.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 15 Principle of virtual displacement.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 02 Planar Concurrent Force System and Plane Couples.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 03 Plane General Force System.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 04 Friction(上海交通大学:王晓君).ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 05 Space mechanics.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 06 Kinematics of Points.ppt
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 07 Basic motion of rigid body.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 08 Composite motion of points.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Chapter 09 Plane motion of rigid body.pptx
- 《理论力学》课程教学资源(PPT课件,英文)Introduction Theory Mechanics.ppt
- 石河子大学:《工程力学》课程教学资源(大纲讲义)理论力学课程教学大纲(机电).doc
- 石河子大学:《工程力学》课程教学资源(大纲讲义)理论力学课程教学大纲(水建).doc
- 石河子大学:《工程力学》课程教学资源(大纲讲义)材料力学教学大纲(机制、农机化专业).doc
- 石河子大学:《工程力学》课程教学资源(大纲讲义)材料力学教学大纲(土木、农水专业).doc
- 石河子大学:《工程力学》课程教学资源(大纲讲义)工程力学课程教学大纲(工业工程).doc
- 石河子大学:《工程力学》课程教学资源(大纲讲义)工程力学课程教学大纲(园林).doc
- 石河子大学:《工程力学》课程教学资源(大纲讲义)理论力学考试大纲(土木工程专业).doc
