华东师范大学:《金融工程》英文版 Chapter 13

13.1 TThe greek letters Chapter 13 Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.1 The Greek Letters Chapter 13

13.2 Example A FI has SOLD for $300,000 a European call on 100,000 shares of a non-dividend paying stock So=49X=50 5%=20% u =13% T =20 Weeks The Black-Scholes value of the option is $240,000 How does the fi hedge its risk? Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.2 Example • A FI has SOLD for $300,000 a European call on 100,000 shares of a non-dividend paying stock: S0 = 49 X = 50 r = 5% = 20% = 13% T = 20 weeks • The Black-Scholes value of the option is $240,000 • How does the FI hedge its risk?

13.3 Naked covered positions ° Naked position(裸期权头寸策略) Take No action Covered position(抵补期权头寸策略) Buy 100,000 shares today Both strategies leave the Fl exposed to significant risk Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.3 Naked & Covered Positions • Naked position (裸期权头寸策略) Take NO action • Covered position(抵补期权头寸策略) Buy 100,000 shares today Both strategies leave the FI exposed to significant risk

13.4 Stop-LosS Strategy This involves Fully covering the option as soon as it moves in-the-money Staying naked the rest of the time This deceptively simple hedging strategy does not work well !! Transactions costs, discontinuity of prices, and the bid-ask bounce kills it Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.4 Stop-Loss Strategy This involves – Fully covering the option as soon as it moves in-the-money – Staying naked the rest of the time • This deceptively simple hedging strategy does NOT work well !!! • Transactions costs, discontinuity of prices, and the bid-ask bounce kills it

13.5 Delt Delta(A)is the rate of change of the option price with respect f to the underlying △ Figure 13.2(p. 311) Option Price B ope A Stock Price Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.5 Delta • Delta () is the rate of change of the option price with respect to the underlying • Figure 13.2 (p. 311) = f S Option Price A B Stock Price Slope = •

13.6 D elta Ledgin g This involves maintaining a delta neutral portfolio The delta of a European call on a stock paying dividends at a rate g is N(d,)e q The delta of a European put is [N(d,)-1]e 9 The hedge position must be frequently rebalanced Delta hedging a written option involves a BUYhigh, SELL low?' trading rule Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.6 Delta Hedging • This involves maintaining a delta neutral portfolio • The delta of a European call on a stock paying dividends at a rate q is • The delta of a European put is • The hedge position must be frequently rebalanced • Delta hedging a written option involves a “BUY high, SELL low” trading rule qT N d − ( ) e 1 qT N d − [ ( ) −1]e 1 •

13.7 Delta Neutral Portfolio Example (in-the-money) Table132(p.314) um ost of tock Shares Shares n Week Price Delta Purch Purch. Interest Cost 049.000.52252.2002,557825578 08.0 800 19798 1854.6200.990 200 65.55.197.35.0 20 2501.000 0.05,2633 Options, Futures, and Other Derivatives, 4th edition o 2000 by John C Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.7 Delta Neutral Portfolio Example (in-the-money) Cum. Cost of Cost Stock Shares Shares Incl. Int. Week Price Delta Purch. Purch. Interest Cost 0 49.000 0.522 52,200 2,557.8 2,557.8 2.5 1 48.120 0.458 (6,400) (308.0) 2,252.3 2.2 2 47.370 0.400 (5,800) (274.7) 1,979.8 1.9 18 54.620 0.990 1,200 65.5 5,197.3 5.0 19 55.870 1.000 1,000 55.9 5,258.2 5.1 20 57.250 1.000 0 0.0 5,263.3 … … … … … … … Table 13.2 (p. 314) •

138 Delta Neutral Portfolio Example (out-of-the-money) Table 13. 3(p. 315 um ost of tock Shares Shares n Week Price Delta Purch Purch. Interest Cost 049.0000.52252.200 82 84.600 252.0000.70513.700 805504 7124 18481300.18312.100582.41.109.6 600 290.0 2048.1200.000 Options, Futures, and Other Derivatives, 4th edition 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.8 Delta Neutral Portfolio Example (out-of-the-money) Cum. Cost of Cost Stock Shares Shares Incl. Int. Week Price Delta Purch. Purch. Interest Cost 0 49.000 0.522 52,200 2,557.8 2,557.8 2.5 1 49.750 0.568 4,600 228.0 2,789.2 2.7 2 52.000 0.705 13,700 712.4 3,504.3 3.4 18 48.130 0.183 12,100 582.4 1,109.6 1.1 19 46.630 0.007 (17,600) (820.7) 290.0 0.3 20 48.120 0.000 (700) (33.7) 256.6 … … … … … … … Table 13.3 (p. 315) •

13.9 Delta for futures From Chapter 3, we have F=S where T is the maturity of futures contract Thus, the delta of a futures contract is aF a(")T e as aS So, if Ha is the required position in the asset for delta hedging and he is the required position in futures for the same delta hedging H H rt* H Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.9 Delta for Futures • From Chapter 3, we have where T* is the maturity of futures contract • Thus, the delta of a futures contract is • So, if HA is the required position in the asset for delta hedging and HF is the required position in futures for the same delta hedging, * 0 0 e rT F = S * * e ( e ) rT rT S S S F = = A r T HF r T HA H * * e e 1 − = = •

13.10 Delta for other futures For a stock or stock index paying a continuous dividend F-e(g)7* H H For a currency H (r-r;) H Option s RAGHelativoMasketsiVejnapGRi6 5 2SdRriygoAE3Hull Tang Yincai, C 203 iShprBhdjCthal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 13.10 Delta for other Futures • For a stock or stock index paying a continuous dividend, • For a currency, Speculative Markets, Finance 665 Spring 2003 Brian Balyeat A r q T HF H ( ) * e − − = A r r T HF H f ( ) * e − − = •
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华东师范大学:《金融工程》英文版 Chapter 12 Options on Stock Indices, Currencies, and Futures.ppt
- 华东师范大学:《金融工程》英文版 Chapter 11 The Black-Scholes Model.ppt
- 华东师范大学:《金融工程》英文版 Chapter 10 Model of the Behavior of Stock prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 9 Introduction to Binomial Trees.ppt
- 华东师范大学:《金融工程》英文版 Chapter 8 Trading strategies Involving options.ppt
- 华东师范大学:《金融工程》英文版 Chapter 7 Properties of Stock Option Prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 6 Options Markets.ppt
- 华东师范大学:《金融工程》英文版 Chapter 5 Swaps (互换).ppt
- 华东师范大学:《金融工程》英文版 Chapter 4 Interest rates and duration(久期).ppt
- 华东师范大学:《金融工程》英文版 Chapter 3 Forward and Futures prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 2 Futures markets and the use of futures for Hedging.ppt
- 华东师范大学:《金融工程》英文版 Chapter 1 Introduction.ppt
- 厦门大学:《高级经济计量学》讲义 第十二章 联立方程模型的估计.ppt
- 厦门大学:《高级经济计量学》讲义 第九章 单方程估计中的高级问题.ppt
- 厦门大学:《高级经济计量学》讲义 第八章 多重共线性.ppt
- 厦门大学:《高级经济计量学》讲义 第七章 自相关.ppt
- 厦门大学:《高级经济计量学》讲义 第六章 异方差 Heteroskedasticity.ppt
- 厦门大学:《高级经济计量学》讲义 第五章 How to use the multiple linear regression model.ppt
- 厦门大学:《高级经济计量学》讲义 第四章 多元线性回归模型.ppt
- 厦门大学:《高级经济计量学》讲义 第三章 一元线性回归模型.ppt
- 华东师范大学:《金融工程》英文版 Chapter 14 Value at risk.ppt
- 华东师范大学:《金融工程》英文版 Chapter 15 Estimating Volatilities and Correlation.ppt
- 华东师范大学:《金融工程》英文版 第一二章部分习题答案.pdf
- 清华大学:《期权、期货衍生产品》(英文版) Chapter1 Introduction.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter2 FuturesandForwardMarkets.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter3 ForwardandFuturesPrices.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter4 HedgingUsingFutures.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter5 InterestRatesFutures.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第一章 不确定性分析.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第二章 可行性研究.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第三章 投资项目分析报表.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第四章 现金流量和等值计算.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第五章 经济学基础.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)绪论 Engineering Economics(经济管理学院:程 源).ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第六章 评价指标.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)绪论.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第八章 市场供求规律.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第九章 可行性研究.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第十章 投资项目分析报表.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第十一章 消费行为分析.ppt