华东师范大学:《金融工程》英文版 Chapter 12 Options on Stock Indices, Currencies, and Futures

12.1 Options on Stock Indices Currencies and futures Chapter 12 Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.1 Options on Stock Indices, Currencies, and Futures Chapter 12

12.2 European Options on Stocks Paying continuous dividends We get the same probability distribution for the stock price at time T in each of the following cases 1. The stock starts at price So and provides a continuous dividend yield g The stock starts at price Soe-qn and provides no dividend yield Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.2 European Options on Stocks Paying Continuous Dividends We get the same probability distribution for the stock price at time T in each of the following cases 1. The stock starts at price S0 and provides a continuous dividend yield = q 2. The stock starts at price S0e -qT and provides no dividend yield

12.3 European Options on Stocks Paving continuous dividends (continued) We can value European options by reducing the stock price to Soe q/ and then behaving as though there is no dividend Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.3 European Options on Stocks Paying Continuous Dividends (continued) We can value European options by reducing the stock price to S0 e –q T and then behaving as though there is NO dividend

12.4 Extension of Chapter 7 Results (Equations 12.1 to 12.3) Lower Bound for calls Xe Lower Bound for puts p≥e"-So oe 9? Put Call Parity C+Xe=p+se9? Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.4 Extension of Chapter 7 Results (Equations 12.1 to 12.3) 0 qT rT c S e Xe − − − Lower Bound for calls: Lower Bound for puts 0 rT qT p Xe S e − − − Put Call Parity 0 rT qT c Xe p S e − − + = +

12.5 Extension of Chapter 11 Results(equations 12.4 and 12.5 soe g n(di-xe n(d2) where d, ln(S0/X)+(r-q+a/2)7 √T n(S/X)+(r-q-a-/2) √T Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.5 Extension of Chapter 11 Results (Equations 12.4 and 12.5) 0 1 2 2 0 1 0 1 0 2 ( ) ( ) ( ) ( ) 2 ln( / ) ( / 2) where 2 ln( / ) ( / 2) q r r T T T T q c S N d Xe N d p Xe N d S N d S X r T d T S X r T d e e q q T − − − − = − = − − − + + = + − − − =

12.6 The binomial model f 0 (7 0 p)f fer!Ipfi+(l-plfdI p Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.6 The Binomial Model S0u ƒu S0d ƒd S0 ƒ f=e-rT[pfu +(1-p)fd ] p=?

12.7 TThe Binomial model (continued In a risk-neutral world the stock price grows at r-g rather than at r when there is a dividend yield at rate q The probability, p, of an up movement must therefore satisfy pOut(I-p)Sod=spe(r-g)r so that q)7 d Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.7 The Binomial Model (continued) • In a risk-neutral world the stock price grows at r-q rather than at r when there is a dividend yield at rate q • The probability, p, of an up movement must therefore satisfy pS0u+(1-p)S0d=S0 e (r-q)T so that ( ) r T q e d p u d − − = −

12.8 Index options Option contracts are on 100X the index The most popular underlying indices are the s&P 100(American)OEX the s&P 500(European) SPX the Major Market Index(XMD Contracts are settled in cash Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.8 Index Options • Option contracts are on 100× the index • The most popular underlying indices are the S&P 100 (American) OEX the S&P 500 (European) SPX the Major Market Index (XMI) • Contracts are settled in cash

12.9 Index Option Exampl oe Consider a call option on the oEX index with a strike price of 560 Suppose 1 contract is exercised When the index level is 580 What is the payoff? (Ans=2000) Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.9 Index Option Example • Consider a call option on the OEX index with a strike price of 560 • Suppose 1 contract is exercised when the index level is 580 • What is the payoff? (Ans=2000)

12.10 Valuing European Index Options We can use the formula for an option on a stock paying a continuous dividend yield Set So current index level Set g average dividend yield expected during the life of the option Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 12.10 Valuing European Index Options We can use the formula for an option on a stock paying a continuous dividend yield • Set S0 = current index level • Set q = average dividend yield expected during the life of the option
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华东师范大学:《金融工程》英文版 Chapter 11 The Black-Scholes Model.ppt
- 华东师范大学:《金融工程》英文版 Chapter 10 Model of the Behavior of Stock prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 9 Introduction to Binomial Trees.ppt
- 华东师范大学:《金融工程》英文版 Chapter 8 Trading strategies Involving options.ppt
- 华东师范大学:《金融工程》英文版 Chapter 7 Properties of Stock Option Prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 6 Options Markets.ppt
- 华东师范大学:《金融工程》英文版 Chapter 5 Swaps (互换).ppt
- 华东师范大学:《金融工程》英文版 Chapter 4 Interest rates and duration(久期).ppt
- 华东师范大学:《金融工程》英文版 Chapter 3 Forward and Futures prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 2 Futures markets and the use of futures for Hedging.ppt
- 华东师范大学:《金融工程》英文版 Chapter 1 Introduction.ppt
- 厦门大学:《高级经济计量学》讲义 第十二章 联立方程模型的估计.ppt
- 厦门大学:《高级经济计量学》讲义 第九章 单方程估计中的高级问题.ppt
- 厦门大学:《高级经济计量学》讲义 第八章 多重共线性.ppt
- 厦门大学:《高级经济计量学》讲义 第七章 自相关.ppt
- 厦门大学:《高级经济计量学》讲义 第六章 异方差 Heteroskedasticity.ppt
- 厦门大学:《高级经济计量学》讲义 第五章 How to use the multiple linear regression model.ppt
- 厦门大学:《高级经济计量学》讲义 第四章 多元线性回归模型.ppt
- 厦门大学:《高级经济计量学》讲义 第三章 一元线性回归模型.ppt
- 厦门大学:《高级经济计量学》讲义 第二章 概率与统计回顾.ppt
- 华东师范大学:《金融工程》英文版 Chapter 13.ppt
- 华东师范大学:《金融工程》英文版 Chapter 14 Value at risk.ppt
- 华东师范大学:《金融工程》英文版 Chapter 15 Estimating Volatilities and Correlation.ppt
- 华东师范大学:《金融工程》英文版 第一二章部分习题答案.pdf
- 清华大学:《期权、期货衍生产品》(英文版) Chapter1 Introduction.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter2 FuturesandForwardMarkets.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter3 ForwardandFuturesPrices.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter4 HedgingUsingFutures.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter5 InterestRatesFutures.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第一章 不确定性分析.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第二章 可行性研究.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第三章 投资项目分析报表.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第四章 现金流量和等值计算.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第五章 经济学基础.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)绪论 Engineering Economics(经济管理学院:程 源).ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第六章 评价指标.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)绪论.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第八章 市场供求规律.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第九章 可行性研究.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第十章 投资项目分析报表.ppt