中国高校课件下载中心 》 教学资源 》 大学文库

厦门大学:《高级经济计量学》讲义 第二章 概率与统计回顾

文档信息
资源类别:文库
文档格式:PPT
文档页数:12
文件大小:59.5KB
团购合买:点击进入团购
内容简介
2.1 1、Statistical or random experiment 2、Sample space or population Sample point, event 2.2 Stochastic or random variable (r. v.) 2.3 Probability 2.4 R.V. and probability density function
刷新页面文档预览

Chapter 2 概率与统计回顾

Chapter 2 概率与统计回顾

2.1 1 Statistical or random experiment 2) Sample space or population Sample point, event 2. 2 Stochastic or random variabler. v) 2.3 Probability 2. 4R.V. and probability density function

2.1 1) Statistical or random experiment 2) Sample space or population Sample point, event 2.2 Stochastic or random variable (r. v.) 2.3 Probability 2.4 R.V. and probability density function

2.5 Multiple random variable Statistically independence f(x,y)=g(h(y) 2.6 Numerical characteristics of ar v 1)expected value(mean) 2)variance and rth moment 3covariance and correlation 4)skewness and kurtosis

2.5 Multiple random variable Statistically independence 2.6 Numerical characteristics of a r. v. 1) expected value (mean) 2) variance and rth moment 3) covariance and correlation 4) skewness and kurtosis ( , ) ( ) ( ) X Y f x y g x h y =

2.7 Sample and functions of a sample Sample moment 2.8 Some important probability distributions 1)normal distribution ()=exp(- 32 2丌 2

2.7 Sample and functions of a sample Sample moment 2.8 Some important probability distributions 1) normal distribution 1 1 2 ( ) exp{ ( ) } 2 2 x f x     − = −

2)Sampling distribution for a function of a sample example X, .,,X,N(u,o) then XN(,o/n) 3Chi-squared distribution 1…,Xn~N(0,1) then X"2+…+X

2) Sampling distribution for a function of a sample example: 3) Chi-squared distribution: 2 1 2 , , ~ ( , ) then ~ ( , / ) X X N n X N n     1 2 2 2 2 1 ( ) , , ~ (0,1) then ~ n n n X X N   = + + X X

4)t-distribution 1,…,Xn~N(A,a2) then X N(u,o /n) and X-H~N(0,1) X-p ∑(X-X) where S2=is

4) t-distribution 2 1 2 2 2 1 ( 1) , , ~ ( , ) then ~ ( , / ) and ~ (0,1) ( ) ~ where 1 n n i i n X X N X X N n N n X X X t t S S n n        = − − − − = = − 

5)F-distribution X12…,Xm~N(x2Ox2),H1…,Yn~N(y2Oy2) ∑(X1-x)2 (Y-Y) 2 2 X Y en X 2 2 (m-1,n-1) Y

5) F-distribution 2 2 ( 1, 2 2 1 1 2 2 2 2 2 1) 1 1 2 , , ~ ( , ), , , ~ ( , ) ( ) ( ) , 1 1 then ~ m X X n Y Y m n i i i i X Y X X m n Y Y X X N Y Y N X X Y Y S S m n S F S       = − − = − − = = − −  

2.9 Statistical Inference

291统计推断的两大部分 Statistical Inference, parameter estimating hypothesis testing 2.9.2 Parameter estimation 1)Point estimation 2)Interval estimation PL(Xx,…,)≤≤U(X,…,Xn)}=1-a

2.9.1 统计推断的两大部分: 2.9.2 Parameter estimation 1) Point estimation 2) Interval estimation parameter estimating Statistical Inference hypothesis testing    1 1 { ( , , ) ( , , )} 1 P L X X U X X n n   = −  

2.9. 3 Properties of a point estimator 1)Linearity(sample mean 2)Unbiasedness 3)Efficiency 4) BLUE 5)Consistency

2.9.3 Properties of a point estimator 1) Linearity (sample mean) 2) Unbiasedness 3) Efficiency 4) BLUE 5) Consistency

共12页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档