华东师范大学:《金融工程》英文版 Chapter 4 Interest rates and duration(久期)

4.1 Interest Rates and duration(久期) Chapter 4 Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
4.1 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University Interest Rates and Duration(久期) Chapter 4

4.2 Types of rates Treasury rates(国债利率)- regarded as risk-free rates LIBOR rates(London Interbank Offer ate)(伦敦银行同业放款利率) generally higher than Treasury zero rates Repo rates(回购利率) -slightly higher than the Treasury rates Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
4.2 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University Types of Rates • Treasury rates(国债利率)—regarded as risk-free rates • LIBOR rates (London Interbank Offer rate) (伦敦银行同业放款利率)–generally higher than Treasury zero rates • Repo rates (回购利率)—slightly higher than the Treasury rates

4.3 Zero rates A zero rate(or spot rate), for maturity T, is the rate of interest earned on an investment that provides a payoff only at time T. In practice. it is usually called zero-coupon interest rate(零息票利率) Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
4.3 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University Zero Rates A zero rate (or spot rate), for maturity T, is the rate of interest earned on an investment that provides a payoff only at time T. In practice, it is usually called zero-coupon interest rate (零息票利率)

4.4 Example (Table 4.1, page 89) Maturity Zero Rate (years)(% cont comp) 0.5 5.0 1.0 58 1.5 64 2.0 68 Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
4.4 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University Example (Table 4.1, page 89) Maturity (years) Zero Rate (% cont comp) 0.5 5.0 1.0 5.8 1.5 6.4 2.0 6.8

4.5 Bond pricing To calculate the cash price of a bond we discount each cash flow at the appropriate zero rate In our example (page 89), the theoretical price of a two-year bond with a principal of $100 providing a 6% coupon semiannually is Be 0.05×0.5 +3e005800+3e-04.5 +103e 0.068×2.0 $98.39 Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
4.5 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University Bond Pricing • To calculate the cash price of a bond we discount each cash flow at the appropriate zero rate • In our example (page 89), the theoretical price of a two-year bond with a principal of $100 providing a 6% coupon semiannually is 103 $98.39 3 3 3 0.068 2.0 0.05 0.5 0.058 1.0 0.064 1.5 + = + + − − − − e e e e

4.6 Bond yield The bond yield is the discount rate that makes the present value of the cash flows on the bond equal to the market price of the bond Suppose that the market price of the bond in our example equals its theoretical price of 98.39 The bond yield is given by solving ex0.5 +3ey10+3e-y 103ey×20 9839 to get y=0.0676 or 6.76% Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
4.6 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University Bond Yield • The bond yield is the discount rate that makes the present value of the cash flows on the bond equal to the market price of the bond • Suppose that the market price of the bond in our example equals its theoretical price of 98.39 • The bond yield is given by solving to get y=0.0676 or 6.76%. 3 3 3 103 98 39 0 5 1 0 1 5 2 0 e e e e − y − y − y − y + + + = . . . .

4.7 Par yield The par yield(面值收益率) for a certain maturity is the coupon rate that causes the bond price to equal its face value(ie. The principal). The bond is usually assumed to provide semIannual coupons In our example we solve 0.05×0.5 0.058×1.0 0.064×1.5 +一e +100+ 0.068×2.0 100 to get c=6.87 Tang Yincai, C 2003, Shanghai Normal University
4.7 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University Par Yield • The par yield (面值收益率) for a certain maturity is the coupon rate that causes the bond price to equal its face value (ie. The principal). The bond is usually assumed to provide semiannual coupons. • In our example we solve c e c e c e c e c= . 2 2 2 100 2 100 687 0 05 0 5 0 058 1 0 0 064 1 5 0 068 2 0 − − − − + + + + = . . . . . . . . to get

4.8 Par Yield(continued) In general if m is the number of coupon payments per year, P is the present value of $1 received at maturity and a is the present value of an annuity(年金)of$10 n each coupon date 100=A+100P→/c(100-100P)m Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
4.8 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University Par Yield (continued) In general if m is the number of coupon payments per year, P is the present value of $1 received at maturity and A is the present value of an annuity(年金) of $1 on each coupon date ➔ c P m A = (100 − 100 ) 100 100P m c = A +

4.9 Sample data (Table 4.2, page 91) Bond Time to Annual Principal Maturity Coupon Price (dollars) years)(dollars)(dollars) 100 0.25 0 97.5 100 0.50 0 94.9 100 0 90.0 100 1.50 96.0 100 2.00 101.6 Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
4.9 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University Sample Data (Table 4.2, page 91)) Bond Time to Annual Bond Principal Maturity Coupon Price (dollars) (years) (dollars) (dollars) 100 0.25 0 97.5 100 0.50 0 94.9 100 1.00 0 90.0 100 1.50 8 96.0 100 2.00 12 101.6

4.10 The Bootstrap Method (息票剥离法) used to determine zero rates An amount 2.5 can be earned on 97.5 during 3 months The 3-month rate is 4 times 2.5/97.5 or 10.256% with quarterly compounding This is 10.13% with continuous compounding Similarly the 6 month and 1 year rates are 10. 47% and 10.,54% with continuous compounding Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
4.10 Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University The Bootstrap Method (息票剥离法) --used to determine zero rates • An amount 2.5 can be earned on 97.5 during 3 months. • The 3-month rate is 4 times 2.5/97.5 or 10.256% with quarterly compounding • This is 10.13% with continuous compounding • Similarly the 6 month and 1 year rates are 10.47% and 10.54% with continuous compounding
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华东师范大学:《金融工程》英文版 Chapter 3 Forward and Futures prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 2 Futures markets and the use of futures for Hedging.ppt
- 华东师范大学:《金融工程》英文版 Chapter 1 Introduction.ppt
- 厦门大学:《高级经济计量学》讲义 第十二章 联立方程模型的估计.ppt
- 厦门大学:《高级经济计量学》讲义 第九章 单方程估计中的高级问题.ppt
- 厦门大学:《高级经济计量学》讲义 第八章 多重共线性.ppt
- 厦门大学:《高级经济计量学》讲义 第七章 自相关.ppt
- 厦门大学:《高级经济计量学》讲义 第六章 异方差 Heteroskedasticity.ppt
- 厦门大学:《高级经济计量学》讲义 第五章 How to use the multiple linear regression model.ppt
- 厦门大学:《高级经济计量学》讲义 第四章 多元线性回归模型.ppt
- 厦门大学:《高级经济计量学》讲义 第三章 一元线性回归模型.ppt
- 厦门大学:《高级经济计量学》讲义 第二章 概率与统计回顾.ppt
- 厦门大学:《高级经济计量学》讲义 第十三章 时间序列分析简介.ppt
- 厦门大学:《高级经济计量学》讲义 第十一章 联立方程模型.ppt
- 厦门大学:《高级经济计量学》讲义 第十章 模型选择的标准及检验.ppt
- 厦门大学:《高级经济计量学》讲义 第一章 绪论.ppt
- 《世界经济与政治》课程教学资源(电子教案)当代世界经济与政治笔记.doc
- 《世界经济与政治》课程教学资源(参考资料)国际贸易 International Trade.pdf
- 《世界经济与政治》课程教学资源(电子教案)第九章 战后资本主义经济危机与经济周期.pdf
- 《世界经济与政治》课程教学资源(电子教案)第八章 战后科技革命及其对世界经济的影响.pdf
- 华东师范大学:《金融工程》英文版 Chapter 5 Swaps (互换).ppt
- 华东师范大学:《金融工程》英文版 Chapter 6 Options Markets.ppt
- 华东师范大学:《金融工程》英文版 Chapter 7 Properties of Stock Option Prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 8 Trading strategies Involving options.ppt
- 华东师范大学:《金融工程》英文版 Chapter 9 Introduction to Binomial Trees.ppt
- 华东师范大学:《金融工程》英文版 Chapter 10 Model of the Behavior of Stock prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 11 The Black-Scholes Model.ppt
- 华东师范大学:《金融工程》英文版 Chapter 12 Options on Stock Indices, Currencies, and Futures.ppt
- 华东师范大学:《金融工程》英文版 Chapter 13.ppt
- 华东师范大学:《金融工程》英文版 Chapter 14 Value at risk.ppt
- 华东师范大学:《金融工程》英文版 Chapter 15 Estimating Volatilities and Correlation.ppt
- 华东师范大学:《金融工程》英文版 第一二章部分习题答案.pdf
- 清华大学:《期权、期货衍生产品》(英文版) Chapter1 Introduction.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter2 FuturesandForwardMarkets.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter3 ForwardandFuturesPrices.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter4 HedgingUsingFutures.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter5 InterestRatesFutures.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第一章 不确定性分析.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第二章 可行性研究.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第三章 投资项目分析报表.ppt