中国高校课件下载中心 》 教学资源 》 大学文库

厦门大学:《高级经济计量学》讲义 第四章 多元线性回归模型

文档信息
资源类别:文库
文档格式:PPT
文档页数:15
文件大小:194KB
团购合买:点击进入团购
内容简介
Classical Multiple linear regression model (CMLRM): 1. model 2. random sample
刷新页面文档预览

Chapter3多元线性回归模型 (Muitiple linear regression model) You are required to get familiar with matrix algebra for mastering this chapter

Chapter 3 多元线性回归模型 (Multiple linear regression model) You are required to get familiar with matrix algebra for mastering this chapter!

a Classical Multiple linear regression model (CMLRM) 1. model X=b+bX1+…+ 6, X+E 2. random sample M, XI k y=b+bx1+…+b如+1(=1,…,n)

◼ Classical Multiple linear regression model (CMLRM): 1. model 2. random sample Y b b X b X 0 1 1 k k = + + + + 1 { ; , } Y X X i i ki 0 1 1 ( 1, , ) i i k ki i Y b b X b X i n = + + + + = 

Matrix form Y=Xb+8 k1 8 1Ⅹ 2,b Ⅹ

Matrix form: 11 1 0 1 1 12 2 1 2 1 1 1 , , , 1 k k n n kn k n X X b Y X X b Y X X b    = +                       = = = =                         Y Xb ε Y X b ε

3. Model assumption: 1.E()=0 2. E(Ge=oI,(I, is a unit matrix) 3. Xis non-random 4. rank(X)=k+l< n 5. Normality assumption E~N(0,o2)(i=1,…,n)

3. Model assumption: 1. 2. 3. is non-random. 4. 5. Normality assumption E( ) ε = 0 2 E( ) ( is a unit matrix)  n n εε = I I X rank( )= 1 X k n +  2 (0, ) ( 1, , )   i N i n =

assumptions 1 and 5 imply that the errors are Independent As in the case of the univariate linear regression models, we can estimate the regression coefficients of the multiple linear regression models by using the ordinary least squares procedure. In matrix form the olse is b=(XX XY

assumptions 1 and 5 imply that the errors are Independent. As in the case of the univariate linear regression models, we can estimate the regression coefficients of the multiple linear regression models by using the ordinary least squares procedure. In matrix form, the OLSE is 1 ˆ ( − b X X) X Y =  

4. OLSE for the CMlrM b=(XXXY 5. Properties of the olse for the cMlRM E(b)=b 2. var(b)=El(b-b)(b-b=O(XX) 3. The gauss-Markoy theorem is still true The ol se for the cmlrm is the blue

4. OLSE for the CMLRM 5. Properties of the OLSE for the CMLRM 1. 2. 3. The Gauss-Markov theorem is still true: The OLSE for the CMLRM is the BLUE. 1 ˆ ( − b X X) X Y =   E( ) b b ˆ = 2 1 ˆ ˆ ˆ var( ) E[( )( ) ] ( )  − b b b b b X X = − − =  

6. Residual and estimation of 2 the population variance o 1. Residual e=Y-Y=Y-Xb=[-X(XXXY PY(P=I-X(XX) X 1) P is idempotent(幂等的) 2)E(e)=0 3)var(e=e(ee)=oP 4) >2=rY-bX'Y=tr(ee)

6. Residual and Estimation of the population variance 1. Residual 1) P is idempotent (幂等的) 2) 3) 4) 2  ˆ ˆ [ ] ( ) = − = − = −   = = −   -1 -1 e Y Y Y Xb I X(X X) X Y PY P I X(X X) X E( ) e 0 = 2 var( ) E( ) e ee P = =   2 1 ˆ tr( ) n i i e =  = − = Y Y bX Y ee   

2. Estimator for O ee n-(k+1)n-(k+1) E(a2)=E( 2 O k-1

2. Estimator for 2  2 2 ˆ ( 1) ( 1) i e n k n k   = = − + − +  e e 2 2 ( ) ( ) ˆ 1 e e E E n k    = = − −

7. Goodness-of-fit testing 1)Total sum of squares TSS=∑(x-y)=YY-ny2 2)Explained sum of squares ESS=∑(y-y)2-∑e2=bXY-ny2 2 Coefficient of determination 2 ESS ee b'XY-ny R TSs∑(x-Y2)YY-ny

7. Goodness-of-fit testing 1. 1) Total sum of squares: 2) Explained sum of squares: 2. Coefficient of determination: 2 2 TSS ( ) Y Y nY i = − = −  Y Y 2 2 2 ESS ( ) ˆ Y Y e nY i i = − − = −   b X Y   2 2 2 2 ESS ˆ 1 TSS ( ) i nY R Y Y nY    − = = − =  − −  e e b X Y Y Y

3. Adjusted R-squared ee 2 R2=1 n-(k+1)_1(m-1)(1-R) n-k-1

3. Adjusted R-squared: 2 2 2 ( 1) ( 1)(1 ) 1 1 ( ) 1 1 i n k n R R Y Y n k n  − + − − = − = − − − − −  e e

共15页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档