华东师范大学:《金融工程》英文版 Chapter 15 Estimating Volatilities and Correlation

15.1 Estimating Volatilities and Correlations Chapter 15 Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.1 Estimating Volatilities and Correlations Chapter 15

152 Standard Approach to Estimating volatility (Equation 15.1) Define on as the volatility per day between day n-1 and day n, as estimated at end of day n-1 Define s as the value of market variable at end of day i Define u =In(S, /Si-1) m-1 Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.2 Standard Approach to Estimating Volatility (Equation 15.1) • Define sn as the volatility per day between day n-1 and day n, as estimated at end of day n-1 • Define Si as the value of market variable at end of day i • Define ui= ln(Si /Si-1 ) s n n i i m n i i m m u u u m u 2 2 1 1 1 1 1 = − − = − = − = ( )

153 Simplifications Usually made (Equation 15.4) Define u; as(S Si-1VSi-1 Assume that the mean value of u is zero Replace m-I by m This gives MLe) n Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.3 Simplifications Usually Made (Equation 15.4) • Define ui as (Si -Si-1 )/Si-1 • Assume that the mean value of ui is zero • Replace m-1 by m This gives (MLE) sn n i i m m u 2 2 1 1 = = −

154 Weighting scheme Instead of assigning equal weights to the observations we can set au where Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.4 Weighting Scheme Instead of assigning equal weights to the observations we can set s n i n i i m i i m u 2 2 1 1 1 = = = − = where

15.5 ARCH(m Model In an ARCH(m) model we also assign some weight to the long-run variance rate, V 7+ c u where Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.5 ARCH(m) Model In an ARCH(m) model we also assign some weight to the long-run variance rate, V: s n i n i i m i i m V u 2 2 1 1 1 = + + = = − = where

156 EWMA Model (Equation 15.7) In an exponentially weighted moving average model, the weights assigned to the u2 decline exponentially as we move back through time This leads to( a special case of (15. 4)with 4+=1,0<2≤1) =an21+(1-A) Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.6 EWMA Model (Equation 15.7) • In an exponentially weighted moving average model, the weights assigned to the u 2 decline exponentially as we move back through time • This leads to (a special case of (15.4) with i+1= i ,0<<1) sn sn un 2 1 2 1 2 = − + 1− − ( )

157 Attractions of EWma Relatively little data needs to be stored We need only remember the current estimate of the variance rate and the most recent observation on the market variable Tracks volatility changes JP Morgan use n=0. 94 for daily volatility forecasting Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.7 Attractions of EWMA • Relatively little data needs to be stored • We need only remember the current estimate of the variance rate and the most recent observation on the market variable • Tracks volatility changes • JP Morgan use = 0.94 for daily volatility forecasting

158 GARCH (11) (Equation 15.8) In GARCH (1, 1)We assign some weight to the long-run average variance rate rk+aonI +u Since weights must sum to 1 γ++β=1 Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.8 GARCH (1,1) (Equation 15.8) In GARCH (1,1) we assign some weight to the long-run average variance rate Since weights must sum to 1 + + b =1 sn V sn bun 2 1 2 1 2 = + − + −

159 GARCH(,1)(continued) Setting o=yV, the GarCH (1, 1)model +aO1+ and a-B Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.9 GARCH (1,1) (continued) Setting w = V, the GARCH (1,1) model is and sn w sn bun 2 1 2 1 2 = + − + − V = − − w 1 b

15.10 Example Suppose 0.000002+0.1312,+0.86o the long-run variance rate is V=0.0002 So that the long-run volatility per day is 1.4% Options, Futures, and Other Derivatives, 4th edition@ 2000 by John C. Hull Tang Yincai, C 2003, Shanghai Normal University
Options, Futures, and Other Derivatives, 4th edition © 2000 by John C. Hull Tang Yincai, © 2003, Shanghai Normal University 15.10 Example • Suppose • the long-run variance rate is V=0.0002 so that the long-run volatility per day is 1.4% sn un sn 2 1 2 1 2 = 0 000002 + 013 − + 086 − . .
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华东师范大学:《金融工程》英文版 Chapter 14 Value at risk.ppt
- 华东师范大学:《金融工程》英文版 Chapter 13.ppt
- 华东师范大学:《金融工程》英文版 Chapter 12 Options on Stock Indices, Currencies, and Futures.ppt
- 华东师范大学:《金融工程》英文版 Chapter 11 The Black-Scholes Model.ppt
- 华东师范大学:《金融工程》英文版 Chapter 10 Model of the Behavior of Stock prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 9 Introduction to Binomial Trees.ppt
- 华东师范大学:《金融工程》英文版 Chapter 8 Trading strategies Involving options.ppt
- 华东师范大学:《金融工程》英文版 Chapter 7 Properties of Stock Option Prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 6 Options Markets.ppt
- 华东师范大学:《金融工程》英文版 Chapter 5 Swaps (互换).ppt
- 华东师范大学:《金融工程》英文版 Chapter 4 Interest rates and duration(久期).ppt
- 华东师范大学:《金融工程》英文版 Chapter 3 Forward and Futures prices.ppt
- 华东师范大学:《金融工程》英文版 Chapter 2 Futures markets and the use of futures for Hedging.ppt
- 华东师范大学:《金融工程》英文版 Chapter 1 Introduction.ppt
- 厦门大学:《高级经济计量学》讲义 第十二章 联立方程模型的估计.ppt
- 厦门大学:《高级经济计量学》讲义 第九章 单方程估计中的高级问题.ppt
- 厦门大学:《高级经济计量学》讲义 第八章 多重共线性.ppt
- 厦门大学:《高级经济计量学》讲义 第七章 自相关.ppt
- 厦门大学:《高级经济计量学》讲义 第六章 异方差 Heteroskedasticity.ppt
- 厦门大学:《高级经济计量学》讲义 第五章 How to use the multiple linear regression model.ppt
- 华东师范大学:《金融工程》英文版 第一二章部分习题答案.pdf
- 清华大学:《期权、期货衍生产品》(英文版) Chapter1 Introduction.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter2 FuturesandForwardMarkets.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter3 ForwardandFuturesPrices.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter4 HedgingUsingFutures.ppt
- 清华大学:《期权、期货衍生产品》(英文版) Chapter5 InterestRatesFutures.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第一章 不确定性分析.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第二章 可行性研究.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第三章 投资项目分析报表.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第四章 现金流量和等值计算.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第五章 经济学基础.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)绪论 Engineering Economics(经济管理学院:程 源).ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第六章 评价指标.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)绪论.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第八章 市场供求规律.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第九章 可行性研究.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第十章 投资项目分析报表.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第十一章 消费行为分析.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第十二章 现金流量和等值计算.ppt
- 清华大学:《工程经济学》课程教学课件(PPT讲稿)第十三章 习题课.ppt