麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)The Extracellular Matrices Part

The Extracellular Matrices Part l 2. Elastin fibers 3. Proteoglycans(PG)and glycosaminoglycans (GAG) 4. Cell-adhesion molecules(CAM)
The Extracellular Matrices Part II. 2. Elastin fibers. 3. Proteoglycans (PG) and glycosaminoglycans (GAG). 4. Cell-adhesion molecules (CAM). 1

Elastin fibers A network of randomly coiled macromolecules No periodicity. Highly extensible chains. Rubber-like elasticity is complicated by ydrophobic bonding effects Interaction of hy drophobic(nonpolar)aa with water leads to hydrophobic bonding. Primarily entropic, not energetic, bonding between molecules. It forces nonpolar macromolecules, such as elastin, to adopt a compact, rather then extended shape in hydrated tissue Stretching of elastin fibers leads to large entropy loss due to reduction in chain configurations and increased"ordering"of water molecules against nonpolar AA. spontaneous retraction Elastic ligament of neck, blood vessel wall
Elastin fibers • A network of randomly coiled macromolecules. No periodicity. Highly extensible chains. • Rubber-like elasticity is complicated by hydrophobic bonding effects. • Interaction of hydrophobic (nonpolar) AA with water leads to hydrophobic bonding. Primarily entropic, not energetic, bonding between molecules. It forces nonpolar macromolecules, such as elastin, to adopt a compact, rather then extended, shape in hydrated tissue. • Stretching of elastin fibers leads to large entropy loss due to reduction in chain configurations and increased “ordering” of water molecules against nonpolar AA. Spontaneous retraction. • Elastic ligament of neck. Blood vessel wall. 2

The Hydrophobic bond △G=△H-T△S Equilibrium when AG =0. G is Gibbs' free energy, the enthalpy is H=E+ pv, t is absolute temperature and s is the entropy. The process goes spontaneously from left to right when AG Ch in Ho The experimental data show (all units in calories per mo):△G=△H-T△s +2600=-2800-298(-18 +2600=-2800+5400 Conclusion: Insolubility of paraffin in water due to entropy loss, not to enthalpy change!( Kauzmann)
The Hydrophobic bond 3 ∆ G = ∆ H − T ∆ S Equilibrium when ∆ G = 0. G is Gibbs’ free energy, the enthalpy is H = E + PV, T is absolute temperature and S is the entropy. The process goes spontaneously from left to right when ∆ G < 0. Find the position of thermodynamic equilibrium for a well-known example of insolubility: CH 4 in benzene → CH 4 in H 2 O The experimental data show (all units in calories per mol): ∆G = ∆ H − T ∆ S +2600 = −2800 − 298 ( −18 ) +2600 = −2800 + 5400 Conclusion: Insolubility of paraffin in water due to entropy loss, not to enthalpy change! (Kauzmann)

Historical models of cell membrane structure Image removed due to copyright considerations
Historical models of cell membrane structure Image removed due to c Image removed due to copyri opyright consi ght considderati eratioons ns 4

Cell membrane showing Extracellular bilayer Oligosaccharide Glycoprotein Peripheral Glycolipid rotein structure Integral c Hydrope Intracellular
Cell membrane showing bilayer structure 5

Elastin fibers in the relaxed aorta Elastin macromolecules are random coils tied together to form a 3-dimensional (insoluble)network Images removed due to copyright considerations Macromolecules coil upon themselves due to high content of nonpolar(hydrophobic) amino acids that mediate withdrawal from polar medium (aqueous buffer) and promote bonding within chains. These networks stretch extensively like all rubbers
Elastin fibers in the relaxed aorta. Elastin macromolecules are random coils tied together to form a 3-dimensional (insoluble) network. Images removed due to Images removed due to copyright consi copyright considderations erations Macromolecules coil upon themselves due to high content of nonpolar (hydrophobic) amino acids that mediate withdrawal from polar medium (aqueous buffer) and promote bonding within chains. These networks stretch extensively like all rubbers. 6

Proteoglycans(PGs)and glycosaminoglycansGAGs a proteoglycan is a poly peptide chain(proteo) with polysaccharide(glycan or GAG)side chains Primary structure modeled as an alternating copolymer of two different glucose-like units, one of them an acidic sugar-like molecule the other an amino sugar with a negatively charged sulfate group (except hyaluronic acid that is not sulfated) Electrostatic interactions between charged groups in GAG side chains of PG responsible for about 50% of stiffness of articular cartilage(Grodzinsky et al.)
Proteoglycans (PGs) and glycosaminoglycans (GAGs) • A proteoglycan is a polypeptide chain (proteo) with polysaccharide (glycan or GAG) side chains. • Primary structure modeled as an alternating copolymer of two different glucose-like units, one of them an acidic sugar-like molecule, the other an amino sugar with a negatively charged sulfate group (except hyaluronic acid that is not sulfated). • Electrostatic interactions between charged groups in GAG side chains of PG responsible for about 50% of stiffness of articular cartilage (Grodzinsky et al.). 7

Proteoglycans(PGs)and glycosaminoglycans(GAGs) Images removed due to copyright considerations
Proteoglycans (PGs) and glycosaminoglycans (GAGs) Images removed due to Images removed due to copyright consi copyright considderations erations 8

Glycosamine Image removed due to copyright considerations glycans Diagram of Chondroitin 4-Sulfate Image removed due to copyright considerations. disaccharide repeat unit Diagram of dermatan Sulfate Image removed due to copyright considerations Diagram of Heparan Sulfate
9 Γλυκοσαµινογλυκανες Glycosaminoglycans disaccharide repeat unit Image removed due to copyright considerations. Diagram of Chondroitin 4-Sulfate Image removed due to copyright considerations. Diagram of Dermatan Sulfate. Image removed due to copyright considerations. Diagram of Heparan Sulfate

Proteoglycans and glycosaminoglycans repeat unit of chondroitin 6-sulfate Image removed due to copyright considerations a proteoglycan 10
10 Proteoglycans andΓλυgκοlycosaminoglycans σαµινογλυκανες repeat unit of chondroitin 6-sulfate a proteoglycan Image removed due to copyright considerations
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)RESPONSE TO IMPLANTS.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)B Structure and function of naturally occurring ECMs.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)WOUND HEALING Roots of the Tissue Response.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)Chapter 1A Irreversible Healing of Extracellular Matrix.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)2-4 UNIT CELL PROCESSES.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)UNIT CELL PROCESSES.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)unitcell intro.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)yannas intro.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)tissue types.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)spector intro.pdf
- 南京农业大学:《遗传学》课程教学资源(试卷习题)习题库(共十四章,部分含解答).doc
- 南京农业大学:《遗传学》课程教学资源(试卷习题)课后答案.doc
- 南京农业大学:《遗传学》课程教学资源(试卷习题)课后答案.doc
- 南京农业大学:《遗传学》课程教学资源(试卷习题)名词解释完全版.doc
- 南京农业大学:《遗传学》课程教学资源(试卷习题)第十五章 遗传和进化.doc
- 南京农业大学:《遗传学》课程教学资源(试卷习题)第十四章 遗传与个体发育.doc
- 南京农业大学:《遗传学》课程教学资源(试卷习题)第十三章 细胞质和遗传.doc
- 南京农业大学:《遗传学》课程教学资源(试卷习题)第十二章 突变和重组机理.doc
- 南京农业大学:《遗传学》课程教学资源(试卷习题)第十一章 遗传的分子基础.doc
- 南京农业大学:《遗传学》课程教学资源(试卷习题)第十章 遗传物质的改变(二)基因突变.doc
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)C Synthesis of biologically active scaffolds.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)MATERIALS BONDING AND PROPERTIES.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)TISSUE ENGINEERING.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)CELLS FOR TISSUE.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)CELL-MATRIX INTERACTIONS.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)Chapter 2 Cell-Matrix Interactions.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)C Cell-Matrix Interactions.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)B Cell-Matrix Interactions.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)RESPONSE TO PARTICLES.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)lTISSUES COMPRISING JOINTS.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)A theory of induced regeneration in adults.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)BIOMATERIALS FOR JOINT REGENERATION-I.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)DENTAL TISSUE REPLACEMENT AND REGENERATION.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)BIOMATERIALS FOR JOINT REGENERATION-II.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)Methodology of Organ Synthesis.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)B Conjunctiva synthesis in vivo.pdf
- 麻省理工大学:《生物材料——组织交互作用》教学讲义(英文版)Simplest synthetic pathways.pdf
- 清华大学:《生物化学》课程PPT教学课件(英文版)General introduction Ion channels.ppt
- 清华大学:《生物化学》课程PPT教学课件(英文版)Macintosh PICT image format is not supported.ppt
- 天水师范学院精品课程:《植物分类学》PPT教学课件:金缕梅科 Hamamelidaceae.ppt