马尔可夫链蒙特卡洛手册:Handbook of Markov Chain Monte Carlo(Chap. 1&5)

Handbook of markov chain monte carlo (Chap.1&5) Chang liu 2014-11-17
Handbook of Markov Chain Monte Carlo (Chap. 1&5) Chang Liu 2014-11-17

Outline Chapter 1: Introduction to MCMC Chapter 5: MCMC using Hamiltonian dynamics
Outline • Chapter 1: Introduction to MCMC • Chapter 5: MCMC using Hamiltonian dynamics

Introduction to markov chain monte Carlo Charles j. geyer History Markov chains Intuitions of mcmc Elementary theory of mcmc The metropolis-Hastings-Green Algorithm
Introduction to Markov Chain Monte Carlo Charles J. Geyer • History • Markov Chains • Intuitions of MCMC • Elementary Theory of MCMC • The Metropolis-Hastings-Green Algorithm

Introduction to mcmc Brief history The invention of computer stimulates simulation methods Metropolis et al. (1953 simulated a liquid in equilibrium with its gas phase by a markov chain Hastings(1970) generalized the metropolis algorithm, and simulations following his scheme are said to use the metropolis-Hastings algorithm A special case of the metropolis-Hastings algorithm was introduced by geman and Geman (1984) Simulations following their scheme are said to use the gibbs sampler. Green(1995) generalized the metropolis-Hastings algorithm Metropolis-Hastings-Green agorithm
Introduction to MCMC • Brief history – The invention of computer stimulates simulation methods. – Metropolis et al.(1953) simulated a liquid in equilibrium with its gas phase by a Markov chain. – Hastings (1970) generalized the Metropolis algorithm, and simulations following his scheme are said to use the Metropolis-Hastings algorithm. – A special case of the Metropolis-Hastings algorithm was introduced by Geman and Geman (1984). Simulations following their scheme are said to use the Gibbs sampler. – Green (1995) generalized the Metropolis–Hastings algorithm: Metropolis–Hastings–Green algorithm

Markov chains Definition A sequence X, X2,... of random elements of some set is a markov chain if the conditional distribution of Xn+1 given X1,..., Xn depends on Xn only P(X +141,,4 )=P(n+1Xn) State space s: the set in which the Xi take values -Transition probabilities: the conditional distribution of Xn+1 given Xn p=P(Kn+1=x|Xn=x1)=1…,n, j=1,…,n( S finite) Stationary transition probabilities transition probabilities does not depend on n Initial distribution: the marginal distribution of X1
Markov Chains • Definition – A sequence 𝑋1, 𝑋2, ⋯ of random elements of some set is a Markov chain if the conditional distribution of 𝑋𝑛+1 given 𝑋1, ⋯ , 𝑋𝑛 depends on 𝑋𝑛 only. 𝑃 𝑋𝑛+1 𝑋1, ⋯ , 𝑋𝑛 = 𝑃(𝑋𝑛+1|𝑋𝑛) – State space 𝑆: the set in which the 𝑋𝑖 take values – Transition probabilities: the conditional distribution of 𝑋𝑛+1 given 𝑋𝑛 𝑝𝑖𝑗 = 𝑃 𝑋𝑛+1 = 𝑥𝑗 𝑋𝑛 = 𝑥𝑖 , 𝑖 = 1, ⋯ , 𝑛, 𝑗 = 1, ⋯ , 𝑛 (𝑆 finite) Stationary transition probabilities: transition probabilities does not depend on 𝑛. – Initial distribution: the marginal distribution of 𝑋1

Markov chains Stationarity A stochastic process is stationary if for every positive integer k the distribution of the k-tuple (Xn+i,,Xn+k) does not depend on n. A Markov chain is stationary if it is a stationary stochastic process An initial distribution is said to be stationary or invariant or equilibrium for some transition probability distribution if the markov chain specified by this initial distribution and transition probability distribution is stationary. Stationarity implies stationary transition probabilities, but not vice versa MCMC samples the equilibrium distribution
Markov Chains • Stationarity – A stochastic process is stationary if for every positive integer k the distribution of the k-tuple (𝑋𝑛+1,⋯ , 𝑋𝑛+𝑘) does not depend on 𝑛. A Markov chain is stationary if it is a stationary stochastic process. – An initial distribution is said to be stationary or invariant or equilibrium for some transition probability distribution if the Markov chain specified by this initial distribution and transition probability distribution is stationary. – Stationarity implies stationary transition probabilities, but not vice versa. – MCMC samples the equilibrium distribution

Markov chains Reversibility(detailed balance) a transition probability distribution is reversible with respect to an initial distribution if, for the markov chain X1, X2, they specify, the distribution of pairs Xixi+1 is exchangeable P(Xi=x, Xn+1=y)=P(Xi=y, Xn+1=X,VXy E S Reversibility implies stationarity but not vice versa (marginalize w.r.t. y: P(Xi=x)=P(Xn+1=x),Vx E S Reversibility plays two roles in Markov chain theory elementary transition probability constructed by all known methods that preserve a specified equilibrium distribution are reversible reversibility makes the markov chain Clt much sharper and conditions much simpler. · Functionals Functional g: S-R.g(Xi, g(X2), is usually not a Markov chain
Markov Chains • Reversibility (detailed balance) – A transition probability distribution is reversible with respect to an initial distribution if, for the Markov chain 𝑋1 , 𝑋2 , ⋯ they specify, the distribution of pairs (𝑋𝑖 ,𝑋𝑖+1 ) is exchangeable 𝑃 𝑋𝑖 = 𝑥, 𝑋𝑛+1 = 𝑦 = 𝑃 𝑋𝑖 = 𝑦, 𝑋𝑛+1 = 𝑥 , ∀𝑥, 𝑦 ∈ 𝑆 – Reversibility implies stationarity, but not vice versa. (marginalize w.r.t. 𝑦: 𝑃 𝑋𝑖 = 𝑥 = 𝑃 𝑋𝑛+1 = 𝑥 , ∀𝑥 ∈ 𝑆) – Reversibility plays two roles in Markov chain theory: elementary transition probability constructed by all known methods that preserve a specified equilibrium distribution are reversible; reversibility makes the Markov chain CLT much sharper and conditions much simpler. • Functionals – Functional 𝑔: 𝑆 → ℝ. 𝑔 𝑋1 , 𝑔 𝑋2 , ⋯ is usually not a Markov chain

tuitions of mcmc Ordinary monte carlo d. sequenceⅪ1,k2,…, special case of MCMc stationary and reversible Estimator for k=Elg(x)): An n3( Variance of the estimator: -(from CLT) 6=∑g(X)-2
Intuitions of MCMC • Ordinary Monte Carlo: – i.i.d. sequence 𝑋1 , 𝑋2 , ⋯, special case of MCMC, stationary and reversible – Estimator for : – Variance of the estimator: 𝜎 2 𝑛 (from CLT)

tuitions of mcmc MCMC Construct a stationary markov chain ,,X2,. with desired equilibrium distribution Estimator for W =elg(x) the same Variance of the estimator. 02=varig(X)+2>covlg(Xi),8(Xi+)) (does not depend on i due to stationarity Autocovariance function and autocorrelation function k H Yk: Yk= covIg(Xi), g(Xi+k)) k→→Yk/Yo =∑区X)-g(x+)-pn
Intuitions of MCMC • MCMC – Construct a stationary Markov Chain 𝑋1, 𝑋2, ⋯ with desired equilibrium distribution – Estimator for : the same – Variance of the estimator: 𝜎 2 𝑛 , (does not depend on 𝑖 due to stationarity) – Autocovariance function and autocorrelation function

tuitions of mcmc ar(1) Example Autoregressive: Xn+1=pXn +Yn, where Yn are i.i.d. N(0, t2) Stationarity requires var(Xn)=var(Xn+1)=p var(Xn)+ var(rn) L.e. var(Xn= so 0 cov (Xi, Xi+k) +2∑ p
Intuitions of MCMC • AR(1) Example – Autoregressive: – Stationarity requires i.e. , so 𝜌 2 < 1 – – Estimate E𝑋: 𝜇 ො 𝑛 = 1 𝑛 σ𝑖=1 𝑛 𝑋𝑖 , 𝜇 ො 𝑛 ∼ 𝒩 𝜇, 𝜎 2 𝑛
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《微积分》课程教学资源(PPT课件讲稿)期末小结.ppt
- 《中学代数研究》课程教学资源(PPT课件讲稿)第四章 函数.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)换元积分法.ppt
- 中国科学技术大学:《数值计算方法》课程教学资源(PPT课件讲稿)第二章 数值微分和数值积分.ppt
- 南京大学:Mathematical Preliminaries Strings and Languages(PPT讲稿).ppt
- 《线性代数》英文专业词汇(中英文对照).doc
- 《图论初步》课程教学资源(PPT课件讲稿)图论初步.pptx
- 《高等数学》课程教学资源(PPT课件讲稿)第七章 微分方程.ppt
- 山东大学:《运筹学》课程教学资源(PPT课件讲稿)第2章 线性规划(模型与基本定理).pptx
- 《数学模型》课程教学资源(PPT课件讲稿)第六章 代数方程与差分方程模型.ppt
- 复旦大学:《科学计算选讲 Course Information》课程教学资源:教学大纲.pdf
- 《离散数学》课程教学资源(PPT课件讲稿)第十三章 几种特殊的图.ppt
- 唐敖庆实验班荣誉课程:数学分析(PPT讲稿)物理、化学、生命科学、计算机与数学.pptx
- 《数学模型》课程教学资源(PPT课件讲稿)第四章 数学规划模型.ppt
- 《离散数学》课程PPT教学课件讲稿(数理逻辑)第二章 命题逻辑的等值和推理演算.ppt
- 《离散数学》课程教学资源(PPT课件讲稿)图的连通性.pptx
- 《数学分析》课程教学资源(PPT课件讲稿)多元函数微分学(可微性与偏导数).ppt
- 《离散数学》课程教学资源(PPT课件讲稿)离散概率.pptx
- 天津城市职业学院:《线性代数》课程教学资源(PPT电子教案课件)第一章 行列式、第二章 矩阵.ppt
- 中国科学院:具有传感非线性的离散时间多主体系统的状态趋同(PPT讲稿,数学与系统科学研究院:陈姚).ppt
- 《数学教学论》课程教学大纲(适用专业:数学与应用数学专业).pdf
- 南京大学:高等数学微积分课程教学资源(PPT课件讲稿)拉姆达演算 Lambda Calculus(λ演算 λ-calculus).pptx
- 新乡学院:《线性代数》课程教学大纲(B).pdf
- 《数学建模基础》课程教学资源(PPT课件讲稿)第六章 稳定性模型.ppt
- Combinatorial interpretations for a class of algebraic equations and uniform partitions.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)换元积分法(题解).ppt
- 《线性代数》课程教学资源(PPT课件讲稿)第2章 线性代数方程组.ppt
- 《高等数学》课程PPT教学课件(习题课)第七章 无穷级数(含自测题及答案).ppt
- 《高等数学》课程教学资源(PPT课件讲稿,习题课)第一章 函数、极限与连续.ppt
- 西安电子科技大学:《运筹学》课程教学资源(PPT课件讲稿)第十章 图与网络分析(赵玮).ppt
- 《数学分析》课程教学资源(PPT课件讲稿)一致收敛性.ppt
- 《数学建模——数学模型》课程教学资源(PPT课件讲稿)第二章 初等模型.ppt
- 《离散数学》课程教学资源(PPT课件讲稿)第四章 二元关系.ppt
- 《数学建模》课程教学资源(PPT课件讲稿)Matlab的使用.ppt
- 清华大学:网络优化模型与算法(PPT讲稿)Network Optimization - Models & Algorithms(数学科学系:谢金星).ppt
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)第三章 命题逻辑的推理理论.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)多元函数微分法及其应用.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第五章 定积分及其应用.ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第八章 离散模型.ppt
- 《概率论》课程教学资源(PPT讲稿)几个常用的概率分布.pptx