《离散数学》课程PPT教学课件(讲稿)第11章 形式语言和自动机初步(11-4)图灵机(2/2)

114图灵机 ■图灵机的基本模型 ■图灵机接受的语言 递归可枚举语言 用图灵机计算函数 部分可计算函数与可计算函数
1 11.4 图灵机 ◼ 图灵机的基本模型 ◼ 图灵机接受的语言 ——递归可枚举语言 ◼ 用图灵机计算函数 ——部分可计算函数与可计算函数

问题的提出 1900年D. Hilbert在巴黎第二届数学家大会上提出 著名的23个问题 第10个问题如何判定整系数多项式是否有整数根? 要求使用“有限次运算的过程” 1970年证明不存在这样的判定算法,即这个问题是 不可判定的,或不可计算的
2 问题的提出 1900年 D. Hilbert 在巴黎第二届数学家大会上提出 著名的23个问题. 第10个问题:如何判定整系数多项式是否有整数根? 要求使用“有限次运算的过程” 1970 年证明不存在这样的判定算法, 即这个问题是 不可判定的, 或不可计算的

计算模型 从20世纪30年代先后提出 图灵机 A M.Turing,1936年 λ转换演算 A Church,1935年 递归函数KG6del,1936年 正规算法A.A. Markov,1951年 无限寄存器机器 J.C. Shepherdson,1963年
3 计算模型 从20世纪30年代先后提出 图灵机 A.M.Turing, 1936年 λ转换演算 A.Church, 1935年 递归函数 K.Gödel, 1936年 正规算法 A.A.Markov, 1951年 无限寄存器机器 J.C.Shepherdson, 1963年 …

Church- Turing论题 已经证明这些模型都是等价的,即它们计算 的函数类(识别的语言类)是相同的 Church- Turing论题:直观可计算的函数类 就是图灵机以及任何与图灵机等价的计算模 型可计算(可定义)的函数类
4 Church-Turing论题 已经证明这些模型都是等价的, 即它们计算 的函数类 (识别的语言类) 是相同的. Church-Turing论题: 直观可计算的函数类 就是图灵机以及任何与图灵机等价的计算模 型可计算 (可定义) 的函数类

图灵机的基本模型 ……Ba1a2……an1anB 。。。。 控制器 定义图灵机(TM)M=(Q,,6,q0,B,A),其中 (1)状态集合Q:非空有穷集合; (2)输入字母表∑:非空有穷集合; (3)带字母表/:非空有穷集合且Xc厂; (4)初始状态q∈Q;
5 图灵机的基本模型 定义 图灵机(TM) M=Q,Σ,Γ,δ,q0 ,B,A , 其中 (1) 状态集合Q: 非空有穷集合; (2) 输入字母表Σ: 非空有穷集合; (3) 带字母表Γ: 非空有穷集合且ΣΓ; (4) 初始状态 q0Q; 控制器

图灵机的基本模型(续) (5)空白符B∈x; (6)接受状态集AcQ; (7)动作函数是Q×/到Ⅳ{,R}XQ的部分函数, 即 dondo×∑ 6(q1,)=(sR,q)的含义:当处于状态q读写头扫视 符号s时,M的下一步把状态转移到q,读写头把这 个改写成s,并向右移一格; 6(q1,s)=(s,L,q)的含义类似,只是读写头向左移一 格;若δ(q,s)没有定义,则M停机
6 图灵机的基本模型(续) (5) 空白符BΓ-Σ; (6) 接受状态集AQ; (7) 动作函数δ是QΓ到Γ{L,R}Q的部分函数, 即domδ QΣ. δ(q,s)=(s ,R,q)的含义: 当处于状态q, 读写头扫视 符号s时, M的下一步把状态转移到q , 读写头把这 个s改写成s , 并向右移一格; δ(q,s)=(s ,L,q)的含义类似, 只是读写头向左移一 格; 若δ(q,s)没有定义, 则M停机

个TMM的实例(例1) 01 B →0(0,R0)(1,R40)(B,L,) (B,L,q2)(1,R,q0)(B,R,q0) 42(B,L,q3) q 1/1,R 0/0,R 0/B,A0/B,R q L B/B,q q 1/1,R B/B R
7 一个TM M的实例(例1) δ 0 1 B →q0 q1 q2 *q3 (0,R,q0 ) (1,R,q0 ) (B,L,q1 ) (B,L,q2 ) (1,R,q0 ) (B,R,q0 ) (B,L,q3 ) — — — — —

图灵机的计算 格局:带的内容,当前的状态和读写头扫视的方格 σ=aq,其中a,B∈r,q∈Q 初始格局σo=q0w,其中ν∈Σ是输入字符串 接受格局σ=aqB:q∈A 停机格局σ=qsβ:冽(q,s没有定义 1}σ2:从σ1经过一步能够到达a2,称a2是a1的后继 G1a2:从σ经过若干步能够到达2
8 格局: 带的内容, 当前的状态和读写头扫视的方格 σ = αqβ, 其中 α,βΓ* , qQ 初始格局σ0= q0w, 其中wΣ*是输入字符串 接受格局σ = αqβ : qA 停机格局σ = αqsβ : δ(q,s)没有定义 σ1 ⊢ σ2 : 从σ1经过一步能够到达σ2 , 称σ2是σ1的后继 σ1 σ2 : 从σ1经过若干步能够到达σ2 图灵机的计算

图灵机的计算(续) 计算:一个有穷的或无穷的格局序列,序列中的每 个格局都是前一个格局的后继. vw∈∑,M从σ=qv开始的计算有3种可能: (1)停机在接受格局,即计算为o0,01,…,σm,其中σn是 接受的停机格局; (2)停机在非接受格局,即计算为σ0,G1,…,n,其中σn 是非接受的停机格局 (3)永不停机,即计算为0,01,…,0n…
9 图灵机的计算(续) 计算: 一个有穷的或无穷的格局序列, 序列中的每一 个格局都是前一个格局的后继. wΣ* , M从σ0= q0w开始的计算有3种可能: (1) 停机在接受格局, 即计算为σ0 ,σ1 , … ,σn , 其中σn是 接受的停机格局; (2) 停机在非接受格局, 即计算为σ0 ,σ1 , … ,σn , 其中σn 是非接受的停机格局; (3) 永不停机, 即计算为σ0 ,σ1 , … ,σn , …

图灵机接受的语言 定义Vw∈∑,如果M从G=q开始的计算停机在 接受格局,则称M接受输入串w.M接受的语言LMD 是M接受的所有输入串,即LMO={w∈x|M接受w 例1(续)M关于输入w=10100的计算: q10100B}1q0100B}10g0100B}101q00B}1010g0B F101000BF1010g10BF101q20BB}101Bg3BB 由于停机在接受格局,故M接受10100 L(MO={v0|w∈{0,41}"} 10
10 图灵机接受的语言 定义 wΣ* , 如果M从σ0= q0w开始的计算停机在 接受格局, 则称M接受输入串w. M接受的语言L(M) 是M接受的所有输入串, 即L(M)={wΣ* | M接受w}. 例1 (续) M关于输入w=10100的计算: q010100B ⊢ 1q00100B ⊢ 10q0100B ⊢ 101q000B ⊢ 1010q00B ⊢ 10100q0B ⊢ 1010q10B ⊢ 101q20BB ⊢ 101Bq3BB 由于停机在接受格局, 故M接受10100. L(M)={w00 | w{0,1}* }
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《离散数学》课程PPT教学课件(讲稿)第11章 形式语言和自动机初步(11-4)图灵机(1/2).ppt
- 《离散数学》课程PPT教学课件(讲稿)第11章 形式语言和自动机初步(11.2-11.3)有穷自动机、有穷自动机和正则文法 的等价性.ppt
- 《离散数学》课程PPT教学课件(讲稿)第11章 形式语言和自动机初步(11-1)形式语言与形式文法.ppt
- 《离散数学》课程PPT教学课件(讲稿)第9章 树.ppt
- 《离散数学》课程PPT教学课件(讲稿)第8章 一些特殊的图(8.4)平面图.ppt
- 《离散数学》课程PPT教学课件(讲稿)第8章 一些特殊的图(8.1-8.3).ppt
- 《离散数学》课程PPT教学课件(讲稿)第7章 图的基本概念(7.2-7.3)通路、回路与图的连通性、图的矩阵表示.ppt
- 《离散数学》课程PPT教学课件(讲稿)第7章 图的基本概念(7.1)无向图及有向图.ppt
- 咸宁职业技术学院:《概率论与数理统计》教学课件_第四章 随机变量初步.ppt
- 咸宁职业技术学院:《概率论与数理统计》教学课件_第五章 数理统计初步.ppt
- 咸宁职业技术学院:《概率论与数理统计》教学课件_第三章 随机变量的熟字特征.ppt
- 咸宁职业技术学院:《概率论与数理统计》教学课件_第二章 随机变量及其分布.ppt
- 咸宁职业技术学院:《概率论与数理统计》教学课件_第一章 随机事件与概率.ppt
- 咸宁职业技术学院:《概率论与数理统计》_习题5-2.doc
- 咸宁职业技术学院:《概率论与数理统计》_习题5-5.doc
- 咸宁职业技术学院:《概率论与数理统计》_习题5-4.doc
- 咸宁职业技术学院:《概率论与数理统计》_习题5-3.doc
- 咸宁职业技术学院:《概率论与数理统计》_习题5-1.doc
- 咸宁职业技术学院:《概率论与数理统计》_习题4-4.doc
- 咸宁职业技术学院:《概率论与数理统计》_习题4-3.doc
- 《离散数学》课程PPT教学课件(讲稿)第10章 组合分析初步.ppt
- 《离散数学》课程PPT教学课件(讲稿)第3章 集合的基本概念和运算.ppt
- 《离散数学》课程PPT教学课件(讲稿)第4章 二元关系与函数(4.1-4.2)集合的笛卡儿积和二元关系、关系的运算.ppt
- 《离散数学》课程PPT教学课件(讲稿)第4章 二元关系与函数(4.3-4.4)关系的性质、关系的闭包.ppt
- 《离散数学》课程PPT教学课件(讲稿)第4章 二元关系与函数(4.5)等价关系与偏序关系.ppt
- 《离散数学》课程PPT教学课件(讲稿)第4章 二元关系与函数(4.6)函数的定义与性质.ppt
- 《离散数学》课程PPT教学课件(讲稿)第5章 代数系统的一般性质(5.1)二元运算及其性质.ppt
- 《离散数学》课程PPT教学课件(讲稿)第5章 代数系统的一般性质(5.2)代数系统及其子代数、积代数.ppt
- 《离散数学》课程PPT教学课件(讲稿)第6章 几个典型的代数系统(6.1)半群与群.ppt
- 《离散数学》课程PPT教学课件(讲稿)第6章 几个典型的代数系统(6.2)环与域.ppt
- 《离散数学》课程PPT教学课件(讲稿)第1章 命题逻辑(1.1-1.2)命题符号化及联结词、命题公式及分类.ppt
- 《离散数学》课程PPT教学课件(讲稿)第1章 命题逻辑(1.3-1.4)命题逻辑等值演算、联结词全功能集.ppt
- 《离散数学》课程PPT教学课件(讲稿)第1章 命题逻辑(1.5)对偶与范式.ppt
- 《离散数学》课程PPT教学课件(讲稿)第1章 命题逻辑(1.6)命题逻辑的推理理论.ppt
- 《离散数学》课程PPT教学课件(讲稿)第2章 一阶逻辑(2.1)一阶逻辑基本概念.ppt
- 《离散数学》课程PPT教学课件(讲稿)第2章 一阶逻辑(2.3)一阶逻辑等值式.ppt
- 《常微分方程》课程教学资源(教案讲义,共五章23讲).doc
- 池州学院:《数学分析》教学大纲.doc
- 池州学院:《数学分析》第二章 数列极限.doc
- 池州学院:《数学分析》第三章 函数极限.doc