电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 02 Review of Linear Algebra and Probability Theory

Statistical Learning Theory and Applications Lecture 2 Review of Linear Algebra and Probability Theory Instructor:Quan Wen SCSE@UESTC Fall 2021
Statistical Learning Theory and Applications Lecture 2 Review of Linear Algebra and Probability Theory Instructor: Quan Wen SCSE@UESTC Fall 2021

Outline (Level 1) ①Linear Algebra ②Probability Theory 1/130
Outline (Level 1) 1 Linear Algebra 2 Probability Theory 1 / 130

Topics: Basic concepts,properties and calculations of vectors o Basic concepts,properties and calculations of matrices o Basic concepts,properties and calculations of probability Basic concepts,properties and calculations of random variable and it's distributions Common probability distributions Key points and difficulties: o Key points:Main concepts and properties of linear algebra and probability theory,and common probability distributions involved in statistical learning Difficulties:Concept and understanding of random variables 2/130
Topics: Basic concepts, properties and calculations of vectors Basic concepts, properties and calculations of matrices Basic concepts, properties and calculations of probability Basic concepts, properties and calculations of random variable and it’s distributions Common probability distributions Key points and difficulties: Key points: Main concepts and properties of linear algebra and probability theory, and common probability distributions involved in statistical learning. Difficulties: Concept and understanding of random variables 2 / 130

Outline (Level 1) ○Linear Algebra Probability Theory 3/130
Outline (Level 1) 1 Linear Algebra 2 Probability Theory 3 / 130

1.Linear Algebra Linear algebra provides a way of compactly representing and operating on sets of linear equations.For example,consider the following system of equations: 4x1-5x2=-13 -2x1+3x2=9 In matrix notation. Ax=b where 4=()=()6=() 4/130
1. Linear Algebra Linear algebra provides a way of compactly representing and operating on sets of linear equations. For example, consider the following system of equations: 4x1 − 5x2 = −13 −2x1 + 3x2 = 9 In matrix notation, Ax = b where A = 4 −5 −2 3 , x = x1 x2 , b = −13 9 4 / 130

Outline (Level 1-2) ○Linear Algebra o Notations and Fundamental Concepts o Matrix Multiplication o Operational Properties o Linear Space o Quadratic Form and Positive Definite Matrix o Matrix Calculus 5/130
Outline (Level 1-2) 1 Linear Algebra Notations and Fundamental Concepts Matrix Multiplication Operational Properties Linear Space Quadratic Form and Positive Definite Matrix Matrix Calculus 5 / 130

Outline (Level 2-3) Notations and Fundamental Concepts o Matrix and Vector 6/130
Outline (Level 2-3) Notations and Fundamental Concepts Matrix and Vector 6 / 130

1.1.Notations and Fundamental Concepts 1.1.1.Matrix and Vector Matrix and Transpose:A E Rx",m rows,n columns d11 a12 d13 ain d21 a22 a23 a2n A= aml am2 am3 amn d11 a21 a31 aml AT= d12 a22 a32 am2 ain a2n a3n amn 7/130
1.1. Notations and Fundamental Concepts 1.1.1. Matrix and Vector Matrix and Transpose: A ∈ R m×n , m rows, n columns A = a11 a12 a13 · · · a1n a21 a22 a23 · · · a2n . . . . . . . . . . . . . . . am1 am2 am3 · · · amn A T = a11 a21 a31 · · · am1 a12 a22 a32 · · · am2 . . . . . . . . . . . . . . . a1n a2n a3n · · · amn 7 / 130

Vector and Matrix:d-dimensional column vector x and its transpose x'or x: X1 X2 X= ,x=X=(1,x2,…,xa Xd Denote the j-th column of A by aj,4..or A.,j,a is column vector. A=[a1,a2,..,an. Denote the i-th row of A by af,4i.:or 4i.,af is row vector.Can be understand as the row version of the i-th column of 4 A= a】 8/130
Vector and Matrix: d-dimensional column vector x and its transpose x ′ or x T : x = x1 x2 . . . xd , x T = x ′ = (x1, x2, · · · , xd) ▶ Denote the j-th column of A by aj , A:, j or A∗, j , aj is column vector. A = [a1, a2, · · · , an] . ▶ Denote the i-th row of A by a T i , Ai,: or Ai,∗, a T i is row vector. Can be understand as the row version of the i-th column of A T A = a T 1 a T 2 . . . a T m 8 / 130

Outline (Level 1-2) ○Linear Algebra o Notations and Fundamental Concepts Matrix Multiplication o Operational Properties o Linear Space o Quadratic Form and Positive Definite Matrix o Matrix Calculus 9/130
Outline (Level 1-2) 1 Linear Algebra Notations and Fundamental Concepts Matrix Multiplication Operational Properties Linear Space Quadratic Form and Positive Definite Matrix Matrix Calculus 9 / 130
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 01 Introduction.pdf
- 安顺学院:《经济统计学》专业新增学士学位授予权评审汇报PPT(吴永武).ppt
- 对外经济贸易大学:《应用统计 Applied Statistics》课程教学资源(教案讲稿).pdf
- 对外经济贸易大学:《应用统计 Applied Statistics》课程教学资源(教学大纲).pdf
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_大脑衰老与吃兴奋功能食品关系研究(调查问卷).doc
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_课后作业答案.doc
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_课后习题解答.doc
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)北京大学《统计软件SAS教程》(李东风).pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)数据分析与EVIEWS应用(易丹辉).pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)SPSS18.0教程(SPSS统计与分析).pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)R语言实战(中文完整版).pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)Matlab基础及其应用教程.pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)MATLAB2013超强教程.pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)Excel统计分析实例精讲.pdf
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_统计原理练习题(放大解答).pdf
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_统计原理练习题.pdf
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_统计原理练习题.doc
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_统计原理教材目录.pdf
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源(上课讲义PPT)第五章 统计数据关系的分析.ppt
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源(上课讲义PPT)第三章 统计数据特征的分析 §3.5 总体分布特征的估计.ppt
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 03 Regression Models.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 04 Perceptron.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 05 Support Vector Machine.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 06 Multilayer Perceptron.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 07 Non-Linear Classification Model - Ensemble Methods.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 08 Data Representation - Parametric Model.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 09 Data Representation — Non-Parametric Model.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 10 Unsupervised Learning.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第一讲 概述(文泉、陈娟).pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第二讲 概率与线性代数回顾.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第三讲 回归模型.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第四讲 感知机.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第五讲 支持向量机.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第六讲 非线性分类模型——多层感知机.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第七讲 非线性分类模型——集成方法.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第八讲 数据表示——含参模型.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第九讲 数据表示——不含参模型.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第十讲 非监督学习.pdf
- 中国人民大学:《应用随机过程 Applied Stochastic Processes》课程教学资源(课件讲稿)第10章 随机过程在保险精算中的应用.pdf
- 中国人民大学:《应用随机过程 Applied Stochastic Processes》课程教学资源(课件讲稿)第11章 Markov链Monte Carlo方法.pdf