电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 04 Perceptron

Statistical Learning Theory and Applications Lecture 4 Perceptron Instructor:Quan Wen SCSE@UESTC Fal,2021
Statistical Learning Theory and Applications Lecture 4 Perceptron Instructor: Quan Wen SCSE@UESTC Fall, 2021

Outline (Level 1) 1Preparatory knowledge 2 Perceptron concept 3 Learning strategies of perceptron 4 Perceptron learning algorithm 5 Convergence of perceptron learning algorithm 6 Dual form of perceptron learning algorithm 1/66
Outline (Level 1) 1 Preparatory knowledge 2 Perceptron concept 3 Learning strategies of perceptron 4 Perceptron learning algorithm 5 Convergence of perceptron learning algorithm 6 Dual form of perceptron learning algorithm 1 / 66

Topics: ●Perceptron concept Perceptron learning strategy o Perceptron learning algorithm o Dual form of perceptron algorithm Key points and difficulties: oKey points:Perceptron learning strategy o Difficulties:Dual form of perceptron algorithm 2/66
Topics: Perceptron concept Perceptron learning strategy Perceptron learning algorithm Dual form of perceptron algorithm Key points and difficulties: Key points: Perceptron learning strategy Difficulties: Dual form of perceptron algorithm 2 / 66

Outline (Level 1) Preparatory knowledge Perceptron concept Learning strategies of perceptron Perceptron learning algorithm Convergence of perceptron learning algorithm Dual form of perceptron learning algorithm 3/66
Outline (Level 1) 1 Preparatory knowledge 2 Perceptron concept 3 Learning strategies of perceptron 4 Perceptron learning algorithm 5 Convergence of perceptron learning algorithm 6 Dual form of perceptron learning algorithm 3 / 66

1.Preparatory knowledge Structure of a Typical Neuron Dendrites- Axon Terminals Nucleus Node of Ranvier Schwann's Cells Axon Myelin Sheath Cell Body 4/66
1. Preparatory knowledge 4 / 66

The Simple Perceptron I 5 W =1 dendrite:input; axon:output 5166
The Simple Perceptron I o = fact( P 5 n=1 in · wn) dendrite: input; axon: output 5 / 66

Threshold Logic Unit (TLU) inputs N weights activation output W2 X ∑ o n a= WiXi y= {0 ,ifa≥0 otherwise 6/66
Threshold Logic Unit (TLU) a = P n i=1 wixi y = n 1 , if a ≥ θ 0 , otherwise 6 / 66

Outline (Level 1) Preparatory knowledge ②Perceptron concept Learning strategies of perceptron Perceptron learning algorithm Convergence of perceptron learning algorithm Dual form of perceptron learning algorithm 7166
Outline (Level 1) 1 Preparatory knowledge 2 Perceptron concept 3 Learning strategies of perceptron 4 Perceptron learning algorithm 5 Convergence of perceptron learning algorithm 6 Dual form of perceptron learning algorithm 7 / 66

2.Perceptron concept Perceptron is a linear binary classification model. 1 Input is the feature vector of the training sample 2 output is the category of the sample,taking +1 and-1 3 a hyper-plane in input space(feature space),dividing samples into positive and negative types 4 a discriminative model Linear regression model:Output is continuous Perceptron:Output is discrete 8/66
2. Perceptron concept ▶ Perceptron is a linear binary classification model. 1 Input is the feature vector of the training sample 2 output is the category of the sample, taking +1 and −1 3 a hyper-plane in input space (feature space), dividing samples into positive and negative types 4 a discriminative model ▶ Linear regression model: Output is continuous ▶ Perceptron: Output is discrete 8 / 66

Outline (Level 1-2) Perceptron concept Definition of Perceptron o Geometric interpretation of perceptron 9166
Outline (Level 1-2) 2 Perceptron concept Definition of Perceptron Geometric interpretation of perceptron 9 / 66
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 03 Regression Models.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 02 Review of Linear Algebra and Probability Theory.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 01 Introduction.pdf
- 安顺学院:《经济统计学》专业新增学士学位授予权评审汇报PPT(吴永武).ppt
- 对外经济贸易大学:《应用统计 Applied Statistics》课程教学资源(教案讲稿).pdf
- 对外经济贸易大学:《应用统计 Applied Statistics》课程教学资源(教学大纲).pdf
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_大脑衰老与吃兴奋功能食品关系研究(调查问卷).doc
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_课后作业答案.doc
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_课后习题解答.doc
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)北京大学《统计软件SAS教程》(李东风).pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)数据分析与EVIEWS应用(易丹辉).pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)SPSS18.0教程(SPSS统计与分析).pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)R语言实战(中文完整版).pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)Matlab基础及其应用教程.pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)MATLAB2013超强教程.pdf
- 《统计原理 Principal of statistics》课程教学资源(统计软件教程)Excel统计分析实例精讲.pdf
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_统计原理练习题(放大解答).pdf
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_统计原理练习题.pdf
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_统计原理练习题.doc
- 上海交通大学:《统计原理 Principal of statistics》课程教学资源_统计原理教材目录.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 05 Support Vector Machine.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 06 Multilayer Perceptron.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 07 Non-Linear Classification Model - Ensemble Methods.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 08 Data Representation - Parametric Model.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 09 Data Representation — Non-Parametric Model.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿,英文版)Lecture 10 Unsupervised Learning.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第一讲 概述(文泉、陈娟).pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第二讲 概率与线性代数回顾.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第三讲 回归模型.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第四讲 感知机.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第五讲 支持向量机.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第六讲 非线性分类模型——多层感知机.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第七讲 非线性分类模型——集成方法.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第八讲 数据表示——含参模型.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第九讲 数据表示——不含参模型.pdf
- 电子科技大学:《统计学习理论及应用 Statistical Learning Theory and Applications》课程教学资源(课件讲稿)第十讲 非监督学习.pdf
- 中国人民大学:《应用随机过程 Applied Stochastic Processes》课程教学资源(课件讲稿)第10章 随机过程在保险精算中的应用.pdf
- 中国人民大学:《应用随机过程 Applied Stochastic Processes》课程教学资源(课件讲稿)第11章 Markov链Monte Carlo方法.pdf
- 中国人民大学:《应用随机过程 Applied Stochastic Processes》课程教学资源(课件讲稿)第1章 预备知识(张波、商豪、邓军).pdf
- 中国人民大学:《应用随机过程 Applied Stochastic Processes》课程教学资源(课件讲稿)第2章 随机过程的基本概念和类型.pdf