电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)09 Sparse Signal Recovery

Chapter 3 Sparse Signal Recovery
Chapter 3 Sparse Signal Recovery

3.1 Sparsity:Applications and Development What is sparse? 1.Many data mining tasks can be represented using a vector or a matrix. 2.Sparsity implies many zeros in a vector or a matrix
3.1 Sparsity: Applications and Development What is sparse? 1. Many data mining tasks can be represented using a vector or a matrix. 2. Sparsity implies many zeros in a vector or a matrix

3.1 Sparsity:Applications and Development As seen in the last chapter in linear regression,we are actually solving this problem: y Φ w y(x,w)=wrφ(x)+n Where n is noise. 十 We have learned that,if p >n,there will be serious over-fitting. n×1 nxp pxI n×1 To suppress over-fitting,we can add a p>>n regularizer.We can add a sparse regularizer (LASSO)to render the target vector sparse,to select a small number of basis function
3.1 Sparsity: Applications and Development As seen in the last chapter in linear regression, we are actually solving this problem: Where is noise. We have learned that, if , there will be serious over-fitting. To suppress over-fitting, we can add a regularizer. We can add a sparse regularizer (LASSO) to render the target vector sparse, to select a small number of basis function. 𝒘 𝒏

3.1 Sparsity:Applications and Development In image processing,to compress a image,we first do a transformation to the pixel matrix to render it sparse,such transformations are 1 Singular Value Decomposition 2 Discrete Cosine Transform 3 Wavelet Transform... Note that the black pixels indicate the matrix values are close to zero ft corner thus making the matrix easy to compress 2 layer discrete cosine transfornpmed in with Haar wavelet basis
3.1 Sparsity: Applications and Development In image processing, to compress a image, we first do a transformation to the pixel matrix to render it sparse, such transformations are 1 Singular Value Decomposition 2 Discrete Cosine Transform 3 Wavelet Transform… Note that the black pixels indicate the matrix values are close to zero thus making the matrix easy to compress 2 layer discrete cosine transform with Haar wavelet basis U S V SVD Up left corner zoomed in DCT Original

3.1 Sparsity:Applications and Development Some times,on Weibo,interesting news originate from certain users and is forwarded many times by other users.We now know who forwards the messages and when the messages are forwarded. Now we want to construct a relationship (who friended whose Weibo) network from the above information.This can be abstracted as a topological graph. Sparsity:each node is linked to a small number of neighbors. Equivalent matrix representation
3.1 Sparsity: Applications and Development Some times, on Weibo, interesting news originate from certain users and is forwarded many times by other users. We now know who forwards the messages and when the messages are forwarded. Now we want to construct a relationship (who friended whose Weibo) network from the above information. This can be abstracted as a topological graph. Sparsity: each node is linked to a small number of neighbors

3.1 Sparsity:Applications and Development Collaborative filtering: Items ? ? ? ? ? ? ? ? ? ? ? ? ? Customers ? ? ? ? ? ? ? Customers are asked to rank items ? ? ? ? ? ? ? ? ? ? ? ? ? ? Not all customers ranked all items ? ? ? ? ? Predict the missing rankings ? ? ? ? ? ?
3.1 Sparsity: Applications and Development Collaborative filtering: Customers are asked to rank items Not all customers ranked all items Predict the missing rankings

3.1 Sparsity:Applications and Development Movies The Netflix prize: ? ? ? ? ? ? ? ? ? ? ? ? ? ? Users ? ? ? ? ? ? ? ? ? ? ? ? About a million users and ? ? ? ? ? ? ? ? ? ? 25000 movies ? Known rankings are sparsely distributed Predict unknown ratings
3.1 Sparsity: Applications and Development The Netflix prize: About a million users and 25000 movies Known rankings are sparsely distributed Predict unknown ratings

3.1 Sparsity:Applications and Development In 2006,monumental papers of compressive sensing were published: Emmanuel Candes,Justin Romberg,and Terence Tao,Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.(IEEE Trans.on Information Theory,52(2)pp.489-509,February 2006) David Donoho,Compressed sensing.(IEEE Trans.on Information Theory,52(4), pp.1289-1306,April2006) Emmanuel Candes and Terence Tao,Near optimal signal recovery from random projections:Universal encoding strategies?(IEEE Trans.on Donoho返a时etet目ghdeshao prize Information Theory,52(12),pp.5406-5425,December 2006)
3.1 Sparsity: Applications and Development In 2006, monumental papers of compressive sensing were published: Emmanuel Candès, Justin Romberg, and Terence Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. (IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, February 2006) David Donoho, Compressed sensing. (IEEE Trans. on Information Theory, 52(4), pp. 1289 - 1306, April 2006) Emmanuel Candès and Terence Tao, Near optimal signal recovery from random projections: Universal encoding strategies? (IEEE Trans. on Information Theory, 52(12), pp. 5406 - 5425, December 2006) Donoho was awarded the Shao prize Emmanuel Candès Terrace Tao

3.2 Sparsity Rendering Algorithms The very important problem in compressive sensing is solving this problem: Given a sparse s,and do this compressiony=Φw,Φis a underdetermined matrix.Now the target is from y,to recover s Bad news is:is underdetermined and we know, normally,y =w has infinite solutions. Good news is:we have a prior information:w is sparse
3.2 Sparsity Rendering Algorithms The very important problem in compressive sensing is solving this problem: Given a sparse , and do this compression , is a underdetermined matrix. Now the target is from , to recover Bad news is: is underdetermined and we know, normally, has infinite solutions. Good news is: we have a prior information: is sparse 𝑦 𝛷 𝑤

3.2 Sparsity Rendering Algorithms Here are two concerns: 1:How sparse should w be so that it can be accurately recovered. 2:Is there any requisition fordΦ? For question 1,we know that y =w has infinite solutions,thus,we have to attach some conditions to s to this solution unique. As s is sparse,we should make it the sparsest solution for y =w. For question 2,we have the following lemma. Suppose a m x n matrix is such that every set of 2S columns are of are linearly independent.Then an S-sparse (the vector w has s non- zero elements)vector w can be reconstructed uniquely from y =w
3.2 Sparsity Rendering Algorithms Here are two concerns: 1: How sparse should be so that it can be accurately recovered. 2: Is there any requisition for ? For question 1, we know that has infinite solutions, thus, we have to attach some conditions to to this solution unique. As is sparse, we should make it the sparsest solution for . For question 2, we have the following lemma. Suppose a matrix is such that every set of 2S columns are of are linearly independent. Then an S-sparse (the vector has S nonzero elements) vector can be reconstructed uniquely from
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)08 Linear Regression.pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(学习资料)Random Matrix Theory and Wireless Communications.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)05 Free Probability.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)07 Analysis of neural networks - a random matrix approach.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)06 Non-asymptotic Analysis for Large Random Matrix.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)04 Asymptotic Spectrum Theorems(4/4).pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)04 Asymptotic Spectrum Theorems(3/4).pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)04 Asymptotic Spectrum Theorems(2/4).pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(文献书籍)An Introduction to Random Matrices(Greg W. Anderson、Alice Guionnet).pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)04 Asymptotic Spectrum Theorems(1/4).pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)03 Transforms.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)02 Types of Matrices and Local Non-Asymptotic Results.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)01 Introduction of Wireless Channel and Random Matrices(陈智).pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(文献书籍)Random Matrix Theory and Wireless Communications.pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(文献书籍)PRML中文版——模式识别与机器学习.pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(文献书籍)Pattern Recognition and Machine Learning.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验十四 虚拟数字示波器实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验十三 基于FPGA的地址译码实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验十二 数字示波器信号调理通道实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验十一 数字示波器协议触发与解码应用测试.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(学习资料)贝叶斯学习补充材料.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(学习资料)随机矩阵补充材料 Analysis of neural networks - a random matrix approach.pdf
- 广东海洋大学:《数字信号处理 Digital Signal Processing》课程教学资源(电子教案).doc
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 1 Introduction(About IC technology).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 1 Introduction(About ASIC Design).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic1 Introduction(About Our Course).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 2 FPGA Design with Verilog(FPGA Design Method、Design Examples).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 2 FPGA Design with Verilog(Supplementary).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 3 Verification and Test.pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 4 VLSI for DSP.pdf
- 电子科技大学:《高等数字集成电路设计 Advanced Digital Integrated Circuits Design》课程教学资源(教学大纲,负责人:贺雅娟).pdf
- 电子科技大学:《高等数字集成电路设计 Advanced Digital Integrated Circuits Design》课程教学资源(课件讲稿)Lecture 1 Introduction & The Fabrics.pdf
- 电子科技大学:《模拟集成电路分析与设计 Analysis and Design of Analog Integrated Circuit》课程教学资源(教学大纲,负责人:罗萍).pdf
- 电子科技大学:《模拟集成电路分析与设计 Analysis and Design of Analog Integrated Circuit》课程教学资源(课件讲稿)Chapter 01 Introduction、Models and comparison of integrated-circuit active devices.pdf
- 电子科技大学:《模拟集成电路分析与设计 Analysis and Design of Analog Integrated Circuit》课程教学资源(课件讲稿)Chapter 02 Amplifiers, source followers and cascodes.pdf
- 川北医学院:《模拟电子技术》课程电子教案(课件讲稿)第四章 集成运算放大器 integrated operational amplifier.pdf
- 川北医学院:《模拟电子技术》课程电子教案(课件讲稿)第四章 双极结型三极管及放大电路基础.pdf
- 《信号与系统》课程教学资源(课件讲稿)第2章 线性时不变系统的时域分析.pdf
- 川北医学院:《模拟电子技术》课程电子教案(课件讲稿)第五章 场效应管放大电路.pdf
- 川北医学院:《模拟电子技术》课程电子教案(课件讲稿)第三章 二极管及其基本电路.pdf