电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)03 Transforms

3,Transforms 1
3. Transforms 1

Overview We will introduce the most useful transforms which are similar to Fourier transform in signal processing,including: ▣Stieltjes transform ▣Shannon transform ▣R transform ▣S transform ▣n-transform These transforms will form a strong basis to be able to understand the extensions discussed in the subsequent Chapters 2
Overview 2 We will introduce the most useful transforms which are similar to Fourier transform in signal processing, including: Stieltjes transform Shannon transform R transform S transform η-transform These transforms will form a strong basis to be able to understand the extensions discussed in the subsequent Chapters

3.1 Moments and Central Moments Moment: (Generalized)Moment: mn=X”=E(X")=∫x”fx(x),n≥1 where X is a random variable Absolute Moment: EX]=Jlx”fx(x) Central Moment: un=E(X-)”]=J(x-u)”fx(x)d where u=m=(). 3
3 3.1 Moments and Central Moments Moment: •(Generalized) Moment: where X is a random variable •Absolute Moment: Central Moment: where ___ ( ) , 1 n n n m X X x f x dx n n X [| | ] n n X x f x dx X [( ) ] n n n X X x f x dx m X 1

3.1.1 Moments for Gaussian Random Variable If X N(u,o2),then u=E(X),o2=E(X-)) and 现x-1-h9w.日n n odd, 13…(n-1)o”, n even, X-u)F2k1o2元,n=(2k+0,odd 4
4 3.1.1 Moments for Gaussian Random Variable If then and ~ ( , ), 2 X N 2 2 X X , 0, odd, [ ] 1 3 ( 1) , even. n n n X n n 2 1 1 3 ( 1) , even, (| | ) 2 ! 2 / , (2 1), odd. n n k k n n X k n k

3.2 Characteristic Function 3.2 Definition: Φx(o)=E(eo)=∫ehof(x) For diserete r. Φx(o)=∑eoP(X=k) Properties: (iΦx(o)=1andΦx(o≤1. mm.=129(x)1-2m m-(-o (n≥1) 0=0 5
5 3.2 Characteristic Function 3.2 Definition: For discrete r.v., Properties: (i) and (ii) ( ) ( ) . jX jx X X e e f x dx k jk X ( ) e P(X k). X (0) 1 () 1. X 1 1 0 ( ) 1 1 ! ! 1 ( ) ( 1) n n n X n n n n n X n n n j j X m n n d m X n j d

3.3 Stieltjes Transform History:Stielyjes transform is proposed by Thomas Stieltjes in 1885, which is used in the study of nonnegative complex number.In 1967, Russian mathematician Marcenko and Pastur exploited Stieltjes transform to derive the limiting eigenvalues distribution of large dimension Wishart random matrix which is called as MP law. Definition 3.3.1:Let X be a real random variable with distribution Fx).Its Stieltjes transform is defined as: m.a)-画x1) Theorem 3.3.1:For all F which admits a Stieltjes transform,the inverse transformation exists and formulates as follows F)-元m广mm,(x+刚]k 6
6 3.3 Stieltjes Transform Definition 3.3.1: Let X be a real random variable with distribution FX (·). Its Stieltjes transform is defined as: 1 1 ( ) [ ] ( ) F X X m z dF X z z Theorem 3.3.1: For all F which admits a Stieltjes transform, the inverse transformation exists and formulates as follows 0 1 ( ) lim Im ( ) X x F y F x m x iy dx History: Stieltjes transform is proposed by Thomas Stieltjes in 1885, which is used in the study of nonnegative complex number. In 1967, Russian mathematician Marcenko and Pastur exploited Stieltjes transform to derive the limiting eigenvalues distribution of large dimension Wishart random matrix which is called as MP law

3.3 Stieltjes Transform Theorem 3.3.2:For a Hermitian matrix XeCNxM,its Stieltjes transform formulates as follows ma)-2 =T(A-:Iy)=Tm(X-2Iy) 1 N in which we denoted A the diagonal matrix of eigenvalue of Remark:It is rather simple to derive limits of traces x-1,y When N grows large,and use inversion theorem,i.e.Theorem 3.3.1, it is then very easy to derive CDF F),we will elaborately discuss on it in next chapter. 7
7 3.3 Stieltjes Transform Theorem 3.3.2: For a Hermitian matrix , its Stieltjes transform formulates as follows N N X 1 1 1 ( ) ( ) 1 1 ( ) ( ) F N N m z dF z tr z tr z N N Λ I X I Remark: It is rather simple to derive limits of traces 1 1 ( ) N tr z N X I When N grows large, and use inversion theorem, i.e. Theorem 3.3.1, it is then very easy to derive CDF F(x), we will elaborately discuss on it in next chapter . in which we denoted the diagonal matrix of eigenvalue of Λ X

3.3 Stieltjes Transform Proof of Theorem 3.3.2: Firstly,we introduce empirical cumulative distribution function of the eigenvalues of an N X N Hermitian matrix A =之,(a)s刘 where (A)is the eigenvalues of A and 1 is the indicator function whose derivative is Dirac Delta function,i.e., d1{2,(A)≤入 =δ(-,(A)dn Hence,we have dλ m日--m)2-8c-h2- 是-l厂=rx-厂
8 3.3 Stieltjes Transform Proof of Theorem 3.3.2: 1 1 1 1 1 1 1 1 1 ( ) ( ) 1 1 ( ) ( ) N N F i i i i N N m z dF d z N z N z tr z tr z N N Λ I X I Firstly, we introduce empirical cumulative distribution function of the eigenvalues of an N × N Hermitian matrix A 1 1 F ( ) 1{ ( ) } N N i N i A A where is the eigenvalues of A and 1{·} is the indicator function whose derivative is Dirac Delta function, i.e., ( ) i A 1{ ( ) } ( ) i i d d d A A Hence, we have

3.3 Stieltjes Transform Theorem 3.3.3:Let XeCNxN be Hermitian.Then,for zC\R mru(z)=m( Proof: mae)-a'正F0 ao =,20 -1m ( 9
9 3.3 Stieltjes Transform Theorem 3.3.3: Let be Hermitian. Then, for N N X z \ ( ) ( ) 1 ( ) ( ) m az m z F a F a X X Proof: ( ) ( ) 1 ( ) ( ) 1 ( ) 1 1 ( ) 1 ( ) F a F m az dF t at az dF t at az dF t a t z m z a X X

3.3 Stieltjes Transform Theorem 3.3.4:If F has compact support included in [a,b],0b,m(z)can be expanded as m=-2兰 Zk=0 where M=dF()is the kth order moment of F. Proof: According to Laurent series,we have X-z k=02 州会空 Zk=0 The result provides a link between the Stieltjes transform of X and the 10 moments of X
10 3.3 Stieltjes Transform Theorem 3.3.4: If F has compact support included in , , then, for such that , can be expanded as z \ z b ( ) m z F [ , ] a b 0 a b 0 1 (z) k F k k M m z z ( ) k M dF k where is the kth order moment of F. The result provides a link between the Stieltjes transform of X and the moments of X. Proof: According to Laurent series, we have 1 0 1 k k z z k X X Hence 1 0 0 0 1 1 1 k k k k k k k k k M z z z z z z X X X
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)02 Types of Matrices and Local Non-Asymptotic Results.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)01 Introduction of Wireless Channel and Random Matrices(陈智).pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(文献书籍)Random Matrix Theory and Wireless Communications.pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(文献书籍)PRML中文版——模式识别与机器学习.pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(文献书籍)Pattern Recognition and Machine Learning.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验十四 虚拟数字示波器实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验十三 基于FPGA的地址译码实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验十二 数字示波器信号调理通道实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验十一 数字示波器协议触发与解码应用测试.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验十 时域反射实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验九 参数测量实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验八 数字示波器中的信号插值.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验七 信号采集抽取功能设计实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验六 信号采集触发功能设计实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验五 数据采集动态性能评估方法.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验四 基于FIFO采样与存储.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验三 信号产生实验.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验二 FPGA开发环境与基本设计流程.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)实验一 时域测试仪器原理及典型应用.pdf
- 电子科技大学:《时域测试技术综合实验 Comprehensive Experiment of Time Domain Testing Technology》课程教学资源(课件讲稿)概述.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)04 Asymptotic Spectrum Theorems(1/4).pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(文献书籍)An Introduction to Random Matrices(Greg W. Anderson、Alice Guionnet).pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)04 Asymptotic Spectrum Theorems(2/4).pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)04 Asymptotic Spectrum Theorems(3/4).pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)04 Asymptotic Spectrum Theorems(4/4).pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)06 Non-asymptotic Analysis for Large Random Matrix.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)07 Analysis of neural networks - a random matrix approach.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)05 Free Probability.pdf
- 《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(学习资料)Random Matrix Theory and Wireless Communications.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)08 Linear Regression.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(课件讲稿)09 Sparse Signal Recovery.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(学习资料)贝叶斯学习补充材料.pdf
- 电子科技大学:《贝叶斯学习与随机矩阵及在无线通信中的应用 BI-RM-AWC》课程教学资源(学习资料)随机矩阵补充材料 Analysis of neural networks - a random matrix approach.pdf
- 广东海洋大学:《数字信号处理 Digital Signal Processing》课程教学资源(电子教案).doc
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 1 Introduction(About IC technology).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 1 Introduction(About ASIC Design).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic1 Introduction(About Our Course).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 2 FPGA Design with Verilog(FPGA Design Method、Design Examples).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 2 FPGA Design with Verilog(Supplementary).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design(ASIC)》课程教学资源(课件讲稿)Topic 3 Verification and Test.pdf