《微分方程》课程教学资源(书籍资料)DENNIS G. ZILL&MICHAEL R. CULLEN《Differential Equations with Boundary-Value Problems》(SEVENTH EDITION)

Differential Eguations With Boundary-Value Problems SEVENTH EDITION Dennis G.Zill Michael R.Cullen

REVIEW OF DIFFERENTIATION Rules 1.Constant: dc=0 2.Constant Multiple: f()=cf(x) d 3.Sum: f(田±gxl=f'e±gx 4.Product: d dx fxg)=f(g)+gefe 5.Quotient: dfx-gx)f"x)-fx)g'() dx g(x) 6.Chain: [g(x2 足fgx》=fgxg'(x) 7.Power: d x”=nxn-1 8.Power: dx ng(g( dx Functions Trigonometric: 9. d d sinx=cosx 10. 11. dx dx cosx=-sinx d tanx=seex d 12.4cotx=-csc 13. d 14. dx -secx=sec xtanx cscx=-cscx cot Inverse trigonometric: 15d 1 16. d cos-1x=-- 1 17. dx 1-x2 dx V1-x2 dx 1+x2 18 ot-x=-1 -sec-1x=- 1 19. 20. d csc-1 x=-- 1 dx 1+x2 dx Ve2-1 dx Vx2-1 Hyperbolic: 21 sinhx=coshx 22. d -cosh x=sinhx 23. dx dx d tanhx=sech2x dx 24 -coth x=-csch2x 25. d sechx=-sech xtanhx 26. d -cschx =-csch x cothx dx dx dx Inverse hyperbolic: 27 -sinh-1x=- 1 28. d cosh-1x=- 1 29.d tanhx=1 dx x2+1 dx x2-1 1-x2 30. -coth=7 31. d 1-x2 sech-Ix=- d 32. csch-1x=- xv1-x2 dx Ve2+1 Exponential: mhvve 34.4b=banb) dx Logarithmic: 5县g=生 36. 1 dx d logx= d x(nb)
Rules 1. Constant: d dx c = 0 2. Constant Multiple: d dx cf (x) = c f (x) . Sum: d dx [f (x) ± g(x)] = f (x) ± g(x) 4. Product: d dx f (x)g(x) = f (x)g(x) + g(x) f (x) 5. Quotient: d dx f (x) g(x) = g(x)f (x) f (x)g (x) [ g(x)]2 6. Chain: d dx f (g(x)) = f (g(x))g(x) 7. Power: d dx xn = nxn1 8. Power: d dx [ g(x)]n = n[ g(x)]n 1 g(x) Functions Trigonometric: 9. d dx sin x = cos x 10. d dx cos x = sin x 11. d dx tan x = sec2 x 12. d dx cot x = csc2 x 13. d dx sec x = sec x tan x 14. d dx csc x = csc x cot x Inverse trigonometric: 15. d dx sin1 x = 1 1 x2 16. d dx cos1 x = 1 1 x2 17. d dx tan1 x = 1 1 + x2 18. d dx cot1 x = 1 1 + x2 19. d dx sec1 x = 1 x x2 1 20. d dx csc1 x = 1 x x2 1 Hyperbolic: 21. d dx sinh x = cosh x 22. d dx cosh x = sinh x 23. d dx tanh x = sech2 x 24. d dx coth x = csch2 x 25. d dx sech x = sech x tanh x 26. d dx csch x = csch x coth x Inverse hyperbolic: 27. d dx sinh1 x = 1 x2 +1 28. d dx cosh1 x = 1 x2 1 29. d dx tanh1 x = 1 1 x2 30. d dx coth1 x = 1 1 x2 31. d dx sech1 x = 1 x 1 x2 32. d dx csch1 x = 1 x x2 +1 Exponential: 33. d dx ex = ex 34. d dx bx = bx (lnb) Logarithmic: 35. d dx ln x = 1 x 36. d dx logb x = 1 x(lnb) 3 REVIEW OF DIFFERENTIATION

BRIEF TABLE OF INTEGRALS +C,n≠-1 n+1 2j片=p+c 3∫eda=c+c ∫as 4 a"+C Ina 5.sin udu =-cos u+C 6.cos udu=sin u+C 7. sec2 u du tan u+C 8 csci udu=-cot u+c 9.sec utan udu=sec u+C 10. csc u cot u du =-csc u+C 11.tan udu =-In cos u+C 12. cot udu =In sin u+C 13.sec u du Insec u+tan u+C 14.cse udu Inlesc u-cot u+C 15.u sin udu =sin u-ucosu+C 16.u cos u du cos u+usin u+C 17.sin'udu=tu-sin 2u+C 1 .cos'udu=u+sin u+c 19.tan'udu=tan u-u+C 20. cot2 udu =-cot u-u C 21.sin'udu=(2+sin'u)cosu+C 22. cos'udu=(2+cos'u)sin u+C 23.tan'udu =tan'u+In cos u+C 24 cot'udu =-+cot2u-Insin u+C 25. sec u du =isecu tanu+Insecu+tanu+C 26. cse u du =-+cscu cotu+Incscu-cotu+C 27. sin aucos bu du=sin(a-b)usin(abuC 28 cos au cos bu du-sin(absin(bc 2(a-b) 2(a+b) 2(a-b) 2(a+b) 29. [e"sin budu= e (asin bu-bcos bu)+C 30 e cos bu du = (acos bu+bsin bu)+C 31. sinh u du cosh u+C 32. cosh u du sinh u+C 33. sech2 u du tanh u+C 34. csch2 u du =-coth u+C 35. tanh u du In(cosh u)+C 36. coth u du Insinh u+C 37. In udu =ulnu-u+C 38. uln udu =iu2 Inu-iu2+C 39. a2- -du=sin+C 40. a ∫-=-r+ sin+C 42. ∫F+-F+++F++c 43. du=-tan+C 44. a2-= 1a+4+C Ja2+u a 2aa-u Note:Some techniques of integration,such as integration by parts and partial fractions,are reviewed in the Student Resource and Solutions Manal that accompanies this text
BRIEF TABLE OF INTEGRALS 1. 1 , 1 1 n n u u du C n n 2. 1 du u C ln u 3. u u e du e C 4. 1 ln u u a du a C a 5. sin cos u du u C 6. cos sin u du u C 7. 2 sec tan u du u C 8. 2 csc cot u du u C 9. sec tan sec u u du u C 10. csc cot csc u u du u C 11. tan ln cos u du u C 12. cot ln sin u du u C 13. sec ln sec tan u du u u C 14. csc ln csc cot u du u u C 15. u u du u u u C sin sin cos 16. u u du u u u C cos cos sin 17. 2 1 1 2 4 sin sin 2 u du u u C 18. 2 1 1 2 4 cos sin 2 u du u u C 19. 2 tan tan u du u u C 20. 2 cot cot u du u u C 21. 3 2 1 3 sin 2 sin cos u du u u C 22. 3 2 1 3 cos 2 cos sin u du u u C 23. 3 2 1 2 tan tan ln cos u du u u C 24. 3 2 1 2 cot cot ln sin u du u u C 25. 3 1 1 2 2 sec sec tan ln sec tan u du u u u u C 26. 3 1 1 2 2 csc csc cot ln csc cot u du u u u u C 27. sin( ) sin( ) sin cos 2( ) 2( ) a bu a bu au bu du C ab ab 28. sin( ) sin( ) cos cos 2( ) 2( ) a bu a bu au bu du C ab ab 29. 2 2 sin sin cos au au e e bu du a bu b bu C a b 30. 2 2 cos cos sin au au e e bu du a bu b bu C a b 31. sinh cosh u du u C 32. cosh sinh u du u C 33. 2 sech tanh u du u C 34. 2 csch coth u du u C 35. tanh ln(cosh ) u du u C 36. coth ln sinh u du u C 37. ln ln u du u u u C 38. 1 1 2 2 2 4 u u du u u u C ln ln 39. 1 2 2 1 sin u du C a u a 40. 2 2 2 2 1 du u a u C ln a u 41. 2 22 22 1 sin 2 2 u au a u du a u C a 42. 2 22 22 22 ln 2 2 u a a u du a u u a u C 43. 1 2 2 1 1 tan u du C a u a a 44. 2 2 1 1 ln 2 a u du C a u a au Note: Some techniques of integration, such as integration by parts and partial fractions, are reviewed in the Student Resource and Solutions Manual that accompanies this text.

TABLE OF LAPLACE TRANSFORMS f(r) {f0=F) f() f())=F(s) 1.1 20.eat sinh k (s a)-K 21 21.ea cosh kt s-a 8-a2-2 3. n! napositive integer 22.tsin kt 2ks 2+2乎 4.1~2 限 23.tcoskt 2-k2 2+k2乎 5.72 温 24.sin kt kt cos kt 2k2 2+ 6. 25.sin kt-kt cos kt 2 G2+2乎 7.sin kt 2ks 2+2 26.t sinh kt 2-2呼 8.cos kt 27.t cosh kt s2+k2 2+2 (G2-k乎 22 28-山 1 9.sin2kt 2+4码 a-b (s-0s-b) 10.cos2kt 2+22 sG2+4k码 29.ae-beh a-b (s-a)(s -b) 1 2 11.eat s-a 30.1-cos kt s(2+码 3 12.sinh kt 2-R 3L.k红-sinkt 22+巧 13.cosh kt 32.asin br-bsin at ab(a2-b2) 2+232+b 14.sinh2kt 22 s62-4码 33.cos bi-cos at a2-b2 2+a2s2+b的 15.cosh2kr 32-2k2 34.sin kt sinh kr 23 s(2-4k码 ++40 1 16.tea 35.sin kt cosh kt k(2+2k2) 6- +4 17."eat n! 36.cos kt sinh kt k2-2 (s -ayi, n a positive integer s4+4 k 18.ett sin kt 6-a2+F 37.cos kt cosh kr +4 19.eat cos kt s-a G-a2+k及 38.Jo) 1 VF+元
TABLE OF LAPLACE TRANSFORMS f(t) 1. 1 2. t 3. t n n a positive integer 4. t 1/2 5. t 1/2 6. t a 7. sin kt 8. cos kt 9. sin2 kt 10. cos2 kt 11. eat 12. sinh kt 13. cosh kt 14. sinh2kt 15. cosh2kt 16. teat 17. t n eat n a positive integer 18. eat sin kt 19. eat cos kt s a (s a) 2 k2 k (s a) 2 k2 n! (s a) n1 , 1 (s a) 2 s2 2k2 s(s2 4k2 ) 2k2 s(s2 4k2 ) s s2 k2 k s2 k2 1 s a s2 2k2 s(s2 4k2 ) 2k2 s(s2 4k2 ) s s2 k2 k s2 k2 ( 1) s1 , a 1 1 2s3/2 B s n! sn1 , 1 s2 1 s { f (t)} F(s) f(t) 20. eat sinh kt 21. eat cosh kt 22. t sin kt 23. t cos kt 24. sin kt kt cos kt 25. sin kt kt cos kt 26. t sinh kt 27. t cosh kt 28. 29. 30. 1 cos kt 31. kt sin kt 32. 33. 34. sin kt sinh kt 35. sin kt cosh kt 36. cos kt sinh kt 37. cos kt cosh kt 38. J0(kt) 1 1s2 k2 s3 s4 4k4 k(s2 2k2) s4 4k4 k(s2 2k2) s4 4k4 2k2 s s4 4k4 s (s2 a2 )(s2 b2 ) cos bt cos at a2 b2 1 (s2 a2 )(s2 b2 ) a sin bt b sin at ab (a2 b2 ) k3 s2(s2 k2 ) k2 s(s2 k2 ) s (s a)(s b) aeat bebt a b 1 (s a)(s b) eat ebt a b s2 k2 (s2 k2 ) 2 2ks (s2 k2 ) 2 2k3 (s2 k2 ) 2 2ks2 (s2 k2 ) 2 s2 k2 (s2 k2 ) 2 2ks (s2 k2 ) 2 s a (s a) 2 k2 k (s a) 2 k2 { f (t)} F(s)

SEVENTH EDITION DIFFERENTIAL EQUATIONS with Boundary-Value Problems
SEVENTH EDITION DIFFERENTIAL EQUATIONS with Boundary-Value Problems

CONTENTS Preface xi 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 1 1.1 Definitions and Terminology 2 1.2 Initial-Value Problems 13 1.3 Differential Equations as Mathematical Models 19 CHAPTER 1 IN REVIEW 32 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 34 2.1 Solution Curves Without a Solution 35 2.1.1 Direction Fields 35 2.1.2 Autonomous First-Order DEs 37 2.2 Separable Variables 44 2.3 Linear Equations 53 2.4 Exact Equations 62 2.5 Solutions by Substitutions 70 2.6 A Numerical Method 75 CHAPTER 2 IN REVIEW 80 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS 82 3.1 Linear Models 83 3.2 Nonlinear Models 94 3.3 Modeling with Systems of First-Order DEs 105 CHAPTER 3 IN REVIEW 113
3 v CONTENTS 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 1 Preface xi 1.1 Definitions and Terminology 2 1.2 Initial-Value Problems 13 1.3 Differential Equations as Mathematical Models 19 CHAPTER 1 IN REVIEW 32 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 34 2.1 Solution Curves Without a Solution 35 2.1.1 Direction Fields 35 2.1.2 Autonomous First-Order DEs 37 2.2 Separable Variables 44 2.3 Linear Equations 53 2.4 Exact Equations 62 2.5 Solutions by Substitutions 70 2.6 A Numerical Method 75 CHAPTER 2 IN REVIEW 80 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS 82 3.1 Linear Models 83 3.2 Nonlinear Models 94 3.3 Modeling with Systems of First-Order DEs 105 CHAPTER 3 IN REVIEW 113

i ·CONTENTS 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS 117 4.1 Preliminary Theory-Linear Equations 118 4.1.1 Initial-Value and Boundary-Value Problems 118 4.1.2 Homogeneous Equations 120 4.1.3 Nonhomogeneous Equations 125 4.2 Reduction of Order 130 4.3 Homogeneous Linear Equations with Constant Coefficients 133 4.4 Undetermined Coefficients-Superposition Approach 140 4.5 Undetermined Coefficients-Annihilator Approach 150 4.6 Variation of Parameters 157 4.7 Cauchy-Euler Equation 162 4.8 Solving Systems of Linear DEs by Elimination 169 4.9 Nonlinear Differential Equations 174 CHAPTER 4 IN REVIEW 178 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS 181 5.1 Linear Models:Initial-Value Problems 182 5.1.1 Spring/Mass Systems:Free Undamped Motion 182 5.1.2 Spring/Mass Systems:Free Damped Motion 186 5.1.3 Spring/Mass Systems:Driven Motion 189 5.1.4 Series Circuit Analogue 192 5.2 Linear Models:Boundary-Value Problems 199 5.3 Nonlinear Models 207 CHAPTER 5 IN REVIEW 216 6 SERIES SOLUTIONS OF LINEAR EQUATIONS 219 6.1 Solutions About Ordinary Points 220 6.1.1 Review of Power Series 220 6.1.2 Power Series Solutions 223 6.2 Solutions About Singular Points 231 6.3 Special Functions 241 6.3.1 Bessel's Equation 241 6.3.2 Legendre's Equation 248 CHAPTER 6 IN REVIEW 253
5 4 vi ● CONTENTS HIGHER-ORDER DIFFERENTIAL EQUATIONS 117 4.1 Preliminary Theory—Linear Equations 118 4.1.1 Initial-Value and Boundary-Value Problems 118 4.1.2 Homogeneous Equations 120 4.1.3 Nonhomogeneous Equations 125 4.2 Reduction of Order 130 4.3 Homogeneous Linear Equations with Constant Coefficients 133 4.4 Undetermined Coefficients—Superposition Approach 140 4.5 Undetermined Coefficients—Annihilator Approach 150 4.6 Variation of Parameters 157 4.7 Cauchy-Euler Equation 162 4.8 Solving Systems of Linear DEs by Elimination 169 4.9 Nonlinear Differential Equations 174 CHAPTER 4 IN REVIEW 178 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS 181 5.1 Linear Models: Initial-Value Problems 182 5.1.1 Spring/Mass Systems: Free Undamped Motion 182 5.1.2 Spring/Mass Systems: Free Damped Motion 186 5.1.3 Spring/Mass Systems: Driven Motion 189 5.1.4 Series Circuit Analogue 192 5.2 Linear Models: Boundary-Value Problems 199 5.3 Nonlinear Models 207 CHAPTER 5 IN REVIEW 216 SERIES SOLUTIONS OF LINEAR EQUATIONS 219 6.1 Solutions About Ordinary Points 220 6.1.1 Review of Power Series 220 6.1.2 Power Series Solutions 223 6.2 Solutions About Singular Points 231 6.3 Special Functions 241 6.3.1 Bessel’s Equation 241 6.3.2 Legendre’s Equation 248 CHAPTER 6 IN REVIEW 253 6

CONTENTS vii 7 THE LAPLACE TRANSFORM 255 7.1 Definition of the Laplace Transform 256 7.2 Inverse Transforms and Transforms of Derivatives 262 7.2.1 Inverse Transforms 262 7.2.2 Transforms of Derivatives 265 7.3 Operational Properties I 270 7.3.1 Translation on the s-Axis 271 7.3.2 Translation on the t-Axis 274 7.4 Operational Properties II 282 7.4.1 Derivatives of a Transform 282 7.4.2 Transforms of Integrals 283 7.4.3 Transform of a Periodic Function 287 7.5 The Dirac Delta Function 292 7.6 Systems of Linear Differential Equations 295 CHAPTER 7 IN REVIEW 300 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 303 8.1 Preliminary Theory-Linear Systems 304 8.2 Homogeneous Linear Systems 311 8.2.1 Distinct Real Eigenvalues 312 8.2.2 Repeated Eigenvalues 315 8.2.3 Complex Eigenvalues 320 8.3 Nonhomogeneous Linear Systems 326 8.3.1 Undetermined Coefficients 326 8.3.2 Variation of Parameters 329 8.4 Matrix Exponential 334 CHAPTER 8 IN REVIEW 337 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 339 9.1 Euler Methods and Error Analysis 340 9.2 Runge-Kutta Methods 345 9.3 Multistep Methods 350 9.4 Higher-Order Equations and Systems 353 9.5 Second-Order Boundary-Value Problems 358 CHAPTER 9 IN REVIEW 362
CONTENTS ● vii 7 THE LAPLACE TRANSFORM 255 7.1 Definition of the Laplace Transform 256 7.2 Inverse Transforms and Transforms of Derivatives 262 7.2.1 Inverse Transforms 262 7.2.2 Transforms of Derivatives 265 7.3 Operational Properties I 270 7.3.1 Translation on the s-Axis 271 7.3.2 Translation on the t-Axis 274 7.4 Operational Properties II 282 7.4.1 Derivatives of a Transform 282 7.4.2 Transforms of Integrals 283 7.4.3 Transform of a Periodic Function 287 7.5 The Dirac Delta Function 292 7.6 Systems of Linear Differential Equations 295 CHAPTER 7 IN REVIEW 300 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 303 8.1 Preliminary Theory—Linear Systems 304 8.2 Homogeneous Linear Systems 311 8.2.1 Distinct Real Eigenvalues 312 8.2.2 Repeated Eigenvalues 315 8.2.3 Complex Eigenvalues 320 8.3 Nonhomogeneous Linear Systems 326 8.3.1 Undetermined Coefficients 326 8.3.2 Variation of Parameters 329 8.4 Matrix Exponential 334 CHAPTER 8 IN REVIEW 337 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 339 9.1 Euler Methods and Error Analysis 340 9.2 Runge-Kutta Methods 345 9.3 Multistep Methods 350 9.4 Higher-Order Equations and Systems 353 9.5 Second-Order Boundary-Value Problems 358 CHAPTER 9 IN REVIEW 362

viii CONTENTS 10 PLANE AUTONOMOUS SYSTEMS 363 10.1 Autonomous Systems 364 10.2 Stability of Linear Systems 370 10.3 Linearization and Local Stability 378 10.4 Autonomous Systems as Mathematical Models 388 CHAPTER 10 IN REVIEW 395 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 397 11.1 Orthogonal Functions 398 11.2 Fourier Series 403 11.3 Fourier Cosine and Sine Series 408 11.4 Sturm-Liouville Problem 416 11.5 Bessel and Legendre Series 423 11.5.1 Fourier-Bessel Series 424 11.5.2 Fourier-Legendre Series 427 CHAPTER 11 IN REVIEW 430 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 432 12.1 Separable Partial Differential Equations 433 12.2 Classical PDEs and Boundary-Value Problems 437 12.3 Heat Equation 443 12.4 Wave Equation 445 12.5 Laplace's Equation 450 12.6 Nonhomogeneous Boundary-Value Problems 455 12.7 Orthogonal Series Expansions 461 12.8 Higher-Dimensional Problems 466 CHAPTER 12 IN REVIEW 469
viii ● CONTENTS 10 PLANE AUTONOMOUS SYSTEMS 363 10.1 Autonomous Systems 364 10.2 Stability of Linear Systems 370 10.3 Linearization and Local Stability 378 10.4 Autonomous Systems as Mathematical Models 388 CHAPTER 10 IN REVIEW 395 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 397 11.1 Orthogonal Functions 398 11.2 Fourier Series 403 11.3 Fourier Cosine and Sine Series 408 11.4 Sturm-Liouville Problem 416 11.5 Bessel and Legendre Series 423 11.5.1 Fourier-Bessel Series 424 11.5.2 Fourier-Legendre Series 427 CHAPTER 11 IN REVIEW 430 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 432 12.1 Separable Partial Differential Equations 433 12.2 Classical PDEs and Boundary-Value Problems 437 12.3 Heat Equation 443 12.4 Wave Equation 445 12.5 Laplace’s Equation 450 12.6 Nonhomogeneous Boundary-Value Problems 455 12.7 Orthogonal Series Expansions 461 12.8 Higher-Dimensional Problems 466 CHAPTER 12 IN REVIEW 469

CONTENTS 。i 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS 471 13.1 Polar Coordinates 472 13.2 Polar and Cylindrical Coordinates 477 13.3 Spherical Coordinates 483 CHAPTER 13 IN REVIEW 486 14 INTEGRAL TRANSFORMS 488 14.1 Error Function 489 14.2 Laplace Transform 490 14.3 Fourier Integral 498 14.4 Fourier Transforms 504 CHAPTER 14 IN REVIEW 510 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 511 15.1 Laplace's Equation 512 15.2 Heat Equation 517 15.3 Wave Equation 522 CHAPTER 15 IN REVIEW 526 APPENDICES Gamma Function APP-1 I Matrices APP-3 Laplace Transforms APP-21 Answers for Selected Odd-Numbered Problems ANS-1 Index I-1
CONTENTS ● ix 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS 471 13.1 Polar Coordinates 472 13.2 Polar and Cylindrical Coordinates 477 13.3 Spherical Coordinates 483 CHAPTER 13 IN REVIEW 486 14 INTEGRAL TRANSFORMS 488 14.1 Error Function 489 14.2 Laplace Transform 490 14.3 Fourier Integral 498 14.4 Fourier Transforms 504 CHAPTER 14 IN REVIEW 510 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 511 15.1 Laplace’s Equation 512 15.2 Heat Equation 517 15.3 Wave Equation 522 CHAPTER 15 IN REVIEW 526 APPENDICES I Gamma Function APP-1 II Matrices APP-3 III Laplace Transforms APP-21 Answers for Selected Odd-Numbered Problems ANS-1 Index I-1
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《数学与科技进步》课程教学资源(参考资料)读书摘录——中国近三百年学术史(梁启超).docx
- 上海交通大学:《数学与科技进步》课程教学资源(参考资料)读书摘录——中国近三百年学术史(梁启超).docx
- 上海交通大学:《数学与科技进步》课程教学资源(参考资料)数学家言行录.docx
- 上海交通大学:《数学与科技进步》课程教学资源(教学PPT)第1、2、3、4、5、6、7章.ppt
- 上海交通大学:《数学与科技进步》课程教学资源(教学PPT)第1、2、3、4、5章(沈灏).ppt
- 《数学与科技进步》课程教学资源参考文献:《数学文化论十九讲》PDF电子书(孔令兵).pdf
- 上海交通大学:《数学与科技进步》课程教学资源(参考文献)从“格致”到“科学”.pdf
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)音乐类型的数学统计——周逸芃.pdf
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)非合作博弈与纳什均衡——李忠睿 王大伟 张正强.docx
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)对流-扩散方程源项识别反问题的MCMC方法论文研读——孙密广.doc
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)对MCMC 方法在瑞利分布样本采集及一元线性回归模型参数估计中应用的思考与研究——吴凯斌.pdf
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)基于控制变量方法的蒙特卡洛方法探究及其在期权定价中的应用——王思远.pdf
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)基于元胞自动机的车载设备对驾驶员行为影响的研究——王浩衡.doc
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)基于MCMC的创业公司估值问题研究——马欣楠.pdf
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)基于MCMC方法的中国象棋等级分系统模型分析——梁久阳,谭明.pdf
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)基于GA-MCMC的粒子滤波图像恢复算法——胡卓然、吴迪舟、焦一航.docx
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)MCMC方法求解生物逆问题——周东旭.pdf
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)LOL战绩铭——李金滨.doc
- 上海交通大学:《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》课程教学资源(学生作业)Distribution Analysis of Spring Festival Travel Based on Gravity Model and MCMC Methodology.pdf
- 《随机模拟方法与应用 Stochastic Simulation Methods and Its Applications》教学资源(论文资料)09 基于Bayesian-MCMC方法的水体污染识别反问题.pdf
- 《微分方程》课程教学资源(电子书籍)NAKHLE H.ASMAR《Partial Differential Equations》with FOURIER SERIES and BOUNDARY VALUE PROBLEMS(Second Edition).pdf
- 高等教育出版社:《数学物理方法》教材PDF电子书(第三版,主编:梁昆淼,共十五章).pdf
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)总目录(电子工业出版社).ppt
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)第1章 命题逻辑.ppt
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)第2章 谓词逻辑.ppt
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)第3章 集合.ppt
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)第4章 二元关系.ppt
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)第5章 函数.ppt
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)第6章 代数系统.ppt
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)第7章 群、环和域.ppt
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)第8章 格与布尔代数.ppt
- 计算机类本科规划教材:《离散数学》课程配套电子教案(PPT课件讲稿)第9章 图论.ppt
- 上海交通大学:《数学物理方法》课程教学资源(课件讲稿)第一章 复数(主讲:李松挺).pdf
- 上海交通大学:《数学物理方法》课程教学资源(课件讲稿)第二章 解析函数 §2.1 极限和连续性 §2.2 导数与解析函数.pdf
- 上海交通大学:《数学物理方法》课程教学资源(课件讲稿)第二章 解析函数 §2.3 初等函数 §2.4 解析函数和调和函数的关系.pdf
- 上海交通大学:《数学物理方法》课程教学资源(课件讲稿)第三章 复变函数的积分.pdf
- 上海交通大学:《数学物理方法》课程教学资源(课件讲稿)第四章 级数 §4.1 幂级数.pdf
- 上海交通大学:《数学物理方法》课程教学资源(课件讲稿)第四章 级数 §4.2 解析函数的Taylor级数展开 § 4.3 解析函数的Laurent展开 §4.4 孤立奇点.pdf
- 上海交通大学:《数学物理方法》课程教学资源(课件讲稿)第五章 留数 §5.1 留数及留数定理.pdf
- 上海交通大学:《数学物理方法》课程教学资源(课件讲稿)第五章 留数 §5.2 留数理论的应用.pdf