《数理统计》课程PPT教学课件(讲稿)第一章 统计推断准备

第一章统计推断准备 0.预备知识 0.1大数定律与中心极限定理 阐明大量随机现象平均结果的稳定性的一系列定理统 称大数定律,而研究独立随机变量的和的极限分布在 什么条件下为正态分布的一类定理叫中心极限定理。 0.1.1车贝雪夫不等式 设随机变量5有期望E5和方差D5,则对任意ε>0,有 P5-E≥esD
第一章 统计推断准备 0.预备知识 0.1 大数定律与中心极限定理 阐明大量随机现象平均结果的稳定性的一系列定理统 称大数定律,而研究独立随机变量的和的极限分布在 什么条件下为正态分布的一类定理叫中心极限定理。 0.1.1车贝雪夫不等式 设随机变量 有期望 和方差 ,则对任意 ,有 2 D P E − E D 0

0.1.2大数定律 定义:若气,5,5m随机变量序列,如果存在常 数列a,42,,a…使得对任意的&>0有 (份会-a小0,有: )-
0.1.2大数定律 定义:若 随机变量序列,如果存在常 数列 使得对任意的 有 成立,则称随机变量序列 服从大数定律. 定理1(贝努里大数定律)设 是n重贝努里试验 中事件A出现的次数,又A在每次试验中出现的 概率为p(0<p<1),则对任意的 ,有: 1 2 , ,..., ,... n 1 2 , ,..., ,... n a a a 0 1 1 lim 1 n i n n i P a n → = − = n n 0 lim 1 n n P p n → − =

定理2(车贝雪夫大数定律)设5,55n…是一列两两不相 关的随机变量,又设他们的方差有界,既存在常数C>0 使有D5≤C,i=1,2,则对任意的ε>0,有 ▣空2小1 例1.: 设,点,,5n为独立同分布的随机变量序列,均服 从参数为1的泊松分布E5,=,D5=,i=1,2…则 -2sc-1 定理3(辛钦大数定律)设气,5,,5,是一列独立同分布的 随机变量,且数学期望存在,E5,=a,D5,≤C,i=1,2… 则对任意的ε>0有 2小 1→00
定理2(车贝雪夫大数定律)设 是一列两两不相 关的随机变量,又设他们的方差有界,既存在常数C>0, 使有 则对任意的 ,有 例1.: 设 为独立同分布的随机变量序列,均服 从参数为 的泊松分布 则 定理3(辛钦大数定律)设 是一列独立同分布的 随机变量,且数学期望存在, 则对任意的 有 1 2 , ,..., ,... n , 1,2,... D C i i = 0 1 1 1 1 lim 1 n n i i n i i P E n n → = = − = 1 2 , ,..., ,... n , , 1,2,... E D i i i = = = 1 1 lim 1 n i n i P n → = − = 1 2 , ,..., ,... n 0 1 1 lim 1 n i n i P a n → = − = Ei = a,Di C,i =1,2,

0.1.3.中心极限定理 定理1(林德贝格-勒维定理)若,52,,5m…是独立同分布 的随机变量序列,且E5=a,D5=o2>0,k=1,2,…则随机变 量,=S,% ,其中S,=∑气的分布函数F(,对一切x, no 有:immE.()=limP(<x)=immP S- 即随机变量渐近地服从标准正态分布。 定理2(德莫佛-拉普拉斯定理)设”,是n重贝努里试验中 事件A出现的次数,而0<p<1是事件A在每次试验中出现 的概率,则1.渐近的服从正态分布N(p,p9),其中q=1-p 或 n→0
0.1.3.中心极限定理 定理1(林德贝格-勒维定理)若 是独立同分布 的随机变量序列,且 则随机变 量 ,其中 的分布函数 对一切x, 有: 即随机变量 渐近地服从标准正态分布。 定理2(德莫佛-拉普拉斯定理)设 是n重贝努里试验中 事件A出现的次数,而0<p<1是事件A在每次试验中出现 的概率,则 渐近的服从正态分布 ,其中q=1-p 或 2 n n S na n − = 1 2 , ,..., ,... n 2 , 0, 1,2,... E a D k k k = = = 1 n n i i S = = F x n ( ) ( ) ( ) 2 2 2 1 lim lim lim 2 t x n n n n n n S na F x P x P x e dt n − → → → − − = = = n n N np npq ( , ) 2 2 1 lim 2 t x n n np P x e dt npq − → − − = n

例2:有一批建筑房屋用的木柱,其中80%的长度 不小于3米,现从这批木柱中随机地取出100根, 问其中至少有30根短于3米的概率是多少? 例3:某车间有200台车床,独立工作,开工率为 0.6,开工时耗电各为1000瓦,问供电部门至少 要供给这个车间多少电力才能使99.9%的概率保 证这个车间不会因为供电不足而影响生产。 例4:一加法器,同时收到20个噪声电压 设他们是相互独立的,且在区间(0,10)上服 从均匀分布的随机变量,记“-会“,,求 P(U>105) Uk,k=1,2,,20
例2:有一批建筑房屋用的木柱,其中80%的长度 不小于3米,现从这批木柱中随机地取出100根, 问其中至少有30根短于3米的概率是多少? 例3:某车间有200台车床,独立工作,开工率为 0.6,开工时耗电各为1000瓦,问供电部门至少 要供给这个车间多少电力才能使99.9%的概率保 证这个车间不会因为供电不足而影响生产。 例 4 : 一 加 法 器 , 同 时 收 到 2 0 个 噪 声 电 压 设他们是相互独立的,且在区间(0,10)上服 从均匀分布的随机变量,记 ,求 , 1,2,...,20 U k k = 20 1 k k U U = = P U( 105)

§1基本概念 1.1总体与样本 总体:研究对象的全体,记为X或5,是指一个随机变量。 个体:组成总体的每个单元。 样本:就是个相互独立且与总体有相同概率分布的随机变量5, i=1,2,…,n,所组成的n维随机变量(5,52,,5m) 样本值:每一次具体的抽样所得的数据就是个随机变量的值 (样本值)用小写字母(x,2,xn表示。 注:样本具有双重性,即它本身是随机变量,但一经抽取便是一 组确定的具体值。 定义:若随机变量,5,…,5相互独立且每个5,=1,2,,n, 与总体5有相同的概率分布,则称随机变量5,52,,5为来自 总体5的容量为n的简单随机样本,称5,i=1,2,,n为样 本的第个分量。若5有分布密度(或分布函数:)则 称(5,52,5n)是来自总体F)(或fd)的样本
§1基本概念 1.1总体与样本 总体:研究对象的全体,记为X或 ,是指一个随机变量。 个体:组成总体的每个单元。 样本:就是n个相互独立且与总体有相同概率分布的随机变量 , i=1,2,…,n,所组成的n维随机变量 样本值:每一次具体的抽样所得的数据就是n个随机变量的值 (样本值)用小写字母 表示。 注:样本具有双重性,即它本身是随机变量,但一经抽取便是一 组确定的具体值。 定义:若随机变量 相互独立且每个 ,i=1,2,…,n, 与总体 有相同的概率分布,则称随机变量 为来自 总体 的容量为n的简单随机样本,称 ,i=1,2,…,n为样 本的第i个分量。若 有分布密度 (或分布函数 )则 称 是来自总体 (或 )的样本. i ( 1 2 , ,..., n ) ( x x x 1 2 , ,.., n ) i i ( 1 2 ) F x( ) f x( ) , ,..., n f x( ) F x( ) n , , , 1 2 n , , , 1 2

1.2统计量 定义:设552,5n为总体5的一个样本,T(xx)为一个 实值函数,如果T中不包含任何未知参数,则称 T5,5,5)为一个统计量。统计量的分布称为抽样分布。 例如:总体5~N(a,o)a已知,o2未知,i,52,,5n为5的一个 样本,则(怎。是统计量,但号会,不是统计量。 1.3顺序统计量及经验分布 1.3.1顺序统计量 设5为总体55)的一个样本,将其诸分量5,=1, 2,…,n,按由小到大的次序重新排列为(55a,5), 即5≤52,≤…≤5m,称k=l,2,,n为总体的第k个顺序统 计量(次序统计量),特别50称为最小项统计量,5为 最大项统计量
1.2统计量 定义:设 为总体 的一个样本, 为一个 实值函数,如果T中 不包含任何未知参数,则称 为一个统计量。统计量的分布称为抽样分布。 例如:总体 ,a已知, 未知, 为 的一个 样本,则 是统计量,但 不是统计量。 1.3顺序统计量及经验分布 1.3.1顺序统计量 设 为总体, 的一个样本,将其诸分量 ,i=1, 2,…,n,按由小到大的次序重新排列为 , 即 ,称 为总体的第k个顺序统 计量(次序统计量),特别 称为最小项统计量, 为 最大项统计量。 1 2 , ,..., n T x x x ( 1 2 , ,.., n ) 1 2 ( , ,..., ) T n ( ) 2 ~ , N a 2 1 2 , ,..., n ( ) 2 1 n i i a = − 1 1 n i i = i (1) (2) ( ) ( , ,..., ) n ( ) , 1,2,..., k k n = (1) ( ) n ( 1 2 , ,..., n ) (1) (2) ( ) ... n

☒无法显示该图片。 例1.5:设有一个总体,它以等概率取0,1)2三个 值,现从此总体中取容量为2的一个样本x,X), 列出样本(X,X)所有可能取值情况和相应的次序 统计量(Xw,X2)的情况
例1.5:设有一个总体,它以等概率取0,1,2三个 值,现从此总体中取容量为2的一个样本 , 列出样本 所有可能取值情况和相应的次序 统计量 的情况。 ( X X1 2 , ) ( X X1 2 , ) ( , ) X(1) X(2)

1.3.2经验分布 由给定的样本(⑤,5,,5n)定义一个函数, ☒无法显示该图片 0, x5 k F(x)= 5k≤x<5k+.(k=1,2,,n1) n 1 x≥ 5m 此函数的性质: (1)当样本固定时,作为x的函数是一个阶梯形的分布函数,F,(x恰为 样本分量不大于x的频率。 (2)当x固定时,它是一个统计量,其分布由总体的分布所确定。 即 nFm(51,52,,5n)~b(n,F(x)二项分布) 称F,(x)为总体对应于样本(5,5,5n) 的经验分布函数
1.3.2经验分布 由给定的样本 定义一个函数, 此函数的性质: (1)当样本固定时,作为x的函数是一个阶梯形的分布函数, 恰为 样本分量不大于x的频率。 (2)当x固定时,它是一个统计量,其分布由总体的分布所确定。 • 即 (二项分布) 称 为总体对应于样本 的经验分布函数。 = − = + ( ) ( ) ( 1), (1) 1, , ( 1,2,..., 1) 0, ( ) n n k k x x k n n k x F x 1 2 ( , ,..., ) n ( ) ( ( )) * 1 2 , ,..., ~ , n n nF b n F x 1 2 ( , ,..., ) n F (x) n F (x) n

1.4常用的一些统计量 1.4.1样本的分位数 设5~F(x)为总体,点5) 为样本,(552,5m,)为顺序 统计量,定义 Fa+0-4+aa+- 称(为样本的2分位数。当乳=1/2时,称5(1/2为样本的 中位数。(也用m表示) 例1.6:若(51,52,57)=(1.5,2.0,4.0,0,8,3.5,9) 则 (5),52),57)=? 1.4.2.样本的极差 Dn=5a-50 称为样本的极差
1.4常用的一些统计量 1.4.1样本的分位数 设 ~ 为总体, 为样本, 为顺序 统计量,定义 称 为样本的 分位数。当 =1/2时,称 为样本的 中位数。(也用 表示) 例1.6:若 (1.5,2.0,4.0,0,8,3.5,9), 则 ? 1.4.2.样本的极差 称为样本的极差 F x ( ) 1 2 ( , ,..., ) n (1) (2) ( ) ( , ,..., ) n ( ) ( ( ( ) )) ( ) ( ( ) ) ( ) * 1 1 1 1 1 , 1 n n n n n n n n n + = − + − + + − + ( ) * ( ) * 1/ 2 me ( 1 , 2 ,..., 7 ) = ( (1) , (2) ,..., (7) ) = Dn (n) (1) = −
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数理统计》课程PPT教学课件(讲稿)常见的连续性随机变量的分布.ppt
- 《数理统计》课程PPT教学课件(讲稿)离散随机变量及分布律.ppt
- 《概率论与数理统计》课程教学资源(教案讲义)Chapter 2 Conditional Probability.pdf
- 《概率论与数理统计》课程教学资源(教案讲义)Chapter 1 Random Events and Probability.pdf
- 《概率论与数理统计》课程教学资源(教案讲义)概率论与数理统计教学大纲.pdf
- 《实分析与傅里叶分析》课程教学资源(讲义)实分析与傅里叶分析(英文版)Introduction to Real Analysis and Fourier Analysis,RA.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(2/4)第二册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(4/4)第四册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(3/4)第三册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(1/4)第一册.pdf
- 微积分发展史(讲义)微积分思想的产生与发展历史.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第八章 假设检验 8.2 单个正态总体的参数检验.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第八章 假设检验 8.1 假设检验的基本概念.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第七章 参数估计 7.3 区间估计.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第七章 参数估计 7.2 点估计的评价标准.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第七章 参数估计 7.1 点估计法.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第六章 数理统计的基本概念 6.2 抽样分布.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第六章 数理统计的基本概念 6.1 基本概念.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第五章 大数定律与中心极限定理 5.2 中心极限定理.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第五章 大数定律与中心极限定理 5.1 大数定律.pdf
- 《线性代数》课程教学资源(书籍文献)线性椭圆型方程 Linear Elliptic Equations.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 00.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 01.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 02.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 03.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 04.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 05.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 06.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 07.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 08.pdf
- 概率论与数理统计课程教学大纲 Probability and statistics.pdf
- 延安大学:《概率论与数理统计》课程授课教案(打印版)概率论与数理统计 Probability Theory and Mathematical Statistics(任课教师:吕佳).pdf
- 西北师范大学:数学与统计学院数学与应用数学专业学院平台学科必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业专业平台必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业专业平台任选课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院信息与计算科学专业专业平台必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院信息与计算科学专业专业平台任选课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业云亭班专业平台必修课程教学大纲汇编.pdf
- 北京信息科技大学:理学院各专业课程教学大纲汇编.pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅰ》课程教学大纲(2012).pdf