上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 05

MATRIX THEORY CHAPTER 5 FALL 2017 1.VECTOR NORMS (4④z+≤z+ (任,≥0 四在+=,)+(2, (⑤))红,到=,或 Theorem 1(Cauchy-Schwarz inequality).If is an inner product on a vector space V over the field F CorR,then for all x,y∈V I红,P≤a,,以 Theorem2.f(,)is an inner product on a vector space V,then‖=√在,E)is a vector norm. Example 1.The IP norm on Cn is -( forl≤p≤In particular: z=+lz2+…+zn: l2=VP+2P+…+EnF Ilall=l. Theorem3.Suppose Virpace f finte dimension.Thenn.onV are equivalent in the sense that there erist constant C>such that 1/CIxl.≤lzl。≤Cl,VxeV 2.MATRIX NORMS Definition3.A function·l:Mn-→R is a Matrir norm if for any A,B∈Mn, (1)WAl≥0: (②)ⅢA=0 if and only if A=0:
MATRIX THEORY - CHAPTER 5 FALL 2017 1. Vector Norms Definition 1. Let V be a vector space over a field F (C or R). A function k · k : V −→ R is a vector norm if for any x, y ∈ V , (1) kxk ≥ 0; (2) kxk = 0 if and only if x = 0; (3) kcxk = |c|kxk; (4) kx + yk ≤ kxk + kyk. Definition 2. Let V be a vector space over a field F (C or R). A function h·, ·i : V × V −→ F is an inner product if for any x, y, z ∈ V , (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hcx, yi = chx, yi for any c ∈ F; (4) hx + z, yi = hx, yi + hz, yi; (5) hx, yi = hy, xi. Theorem 1 (Cauchy-Schwarz inequality). If h·, ·i is an inner product on a vector space V over the field F (C or R), then for all x, y ∈ V |hx, yi|2 ≤ hx, xihy, yi. Theorem 2. If h·, ·i is an inner product on a vector space V , then kxk = p hx, xi is a vector norm. Example 1. The l p norm on C n is kxkp = Xn i=1 |xi | p !1 p for 1 ≤ p ≤ ∞ In particular: kxk1 = |x1| + |x2| + · · · + |xn|; kxk2 = p |x1| 2 + |x2| 2 + · · · + |xn| 2; kxk∞ = max 1≤i≤n |xi |. Theorem 3. Suppose V is a vector space of finite dimension. Then any two vector norms k · k?, k · k◦ on V are equivalent in the sense that there exist constant C > 0 such that 1/Ckxk? ≤ kxk◦ ≤ Ckxk?, ∀ x ∈ V. 2. Matrix Norms Definition 3. A function 9 · 9 : Mn −→ R is a Matrix norm if for any A, B ∈ Mn, (1) 9A9 ≥ 0; (2) 9A9 = 0 if and only if A = 0; (3) 9cA9 = |c| 9 A9; (4) 9A + B9 ≤ 9A 9 + 9 B9, (5) 9AB9 ≤ 9A 9 9B9. 1

2 FALL 2017 A:=罗件 Example 2.(1) 4=警件-(学空)广=网 (② 4=器快=器 小=a…,the c eor九 =器 A,there erists a matriz norm such that p(A)All p(A)+e. Proof.Fix A and e>0,we construct a matrix norm in the following way: (1)There exists a unitary matrix U such that UAU=T is an upper triangular matrix.Hencet=Ai, Thenl(A)+e.Fix D.. (3)Define a matr x norm for arbitrary BE Mn byB =D.UBUD Applying this norm to A we haveA≥pA) Theorem 7.For,limA=0 if and only if p(A)<1. Proof.:Suppose z is an eigenvector associated to eigenvalue A.Then Ar =r.Take koo.Since 0=limgAr,we have limg=0.Hence 1.Since A is an arbitrary eigenvalue, Theorem 8.For any AE Mn and any matriz norm,p(A)=limkA/
2 FALL 2017 Theorem 4. Let k· k? is a vector norm on C n. Then we can define a corresponding matrix norm on Mn(C) by 9A9? = max x6=0 kAxk? kxk? . Example 2. (1) 9A92 = max x6=0 kAxk2 kxk2 = max x6=0 x ∗A∗Ax x ∗x 1 2 = p λmax(A∗A). (2) 9A91 = max x6=0 kAxk1 kxk1 = max 1≤j≤n kαjk1 where A = [α1, · · · , αn], i.e. αj is the j-th column vector of A. (3) 9A9∞ = max x6=0 kAxk∞ kxk∞ = max 1≤i≤n kβik1 where A = β T 1 . . . β T n , i.e. β T i is the i-th row vector of A. Remark 1. Since Mn(C) is also a vector space of dimension n 2 . So we have the vector norms for A = [aij ] as follows: kAk1 = Xn i,j=1 |aij |, kAk2 = Xn i,j=1 |aij | 2 1 2 , kAk∞ = max 1≤i,j≤n |aij |. Theorem 5. Let ρ(A) be the spectrum radius of A, i.e. ρ(A) = max{|λ| : λ ∈ σ(A)}. Then for any matrix norm 9 · 9 on Mn(C), ρ(A) ≤ 9A 9 . Proof. Let λ be any eigenvalue of A. So there is some eigenvector x 6= 0 such that Ax = λx. We construct a square matrix X such that each column vector of X is equal to x. Then |λ| 9 X9 = 9λX9 = 9AX9 ≤ 9A 9 9X9 Since 9X9 6= 0, we have 9A9 ≥ |λ|. Since λ is arbitrary eigenvalue, we get 9A9 ≥ ρ(A). Theorem 6. Given A ∈ Mn, for any > 0, there exists a matrix norm 9·9 such that ρ(A) ≤ 9A9 ≤ ρ(A)+. Proof. Fix A and > 0,we construct a matrix norm in the following way: (1) There exists a unitary matrix U such that U ∗AU = T is an upper triangular matrix. Hence tii = λi , tij = 0 for i > j. Fix U. (2) Consider the matrix H = [hij ] = DsT D−1 s where Ds = diag{s 1 , s2 , · · · , sn}. Then H is also upper triangular with hii = tii = λi and hij = s i−j tij for i 0 such that ρ(A) + < 1. By last theorem, there exists a matrix norm such that 9A9 < 1. Hence limk→ ∞ 9 Ak9 = 0. Theorem 8. For any A ∈ Mn and any matrix norm 9 · 9, ρ(A) = limk→ 9Ak9 1/k .

MATRIX THEORY-CHAPTER 5 Proof.For any 1>c>0,there exists a matrix norm.such that p(A)l.p(A)+e.Then p(A)=p(A)≤川Al.≤((A)+e) For the given norm.there exists a constant C such that C-1IB.≤B≤CIB: Hence p(A=p(A)≤川4Ⅲ≤C(P(A)+e)' p(A)≤IA/≤Ck((A)+) Then there exists ko such that when k>ko,1C1+e and 0≤I4/k-p(A)≤(p(A)+2 We finish the proof. ◇ Theorem9.ForA∈Mn,∑e1ak,Ak convergesif∑2,la l for some matrit norm·l Corollary 1.For A=[f,then A is invertible. Proof.We can show that in this case-D-Al<1 where D is the diagonal of A.Hence D-A and A are invertible
MATRIX THEORY - CHAPTER 5 3 Proof. For any 1 > > 0, there exists a matrix norm 9 · 9?such that ρ(A) ≤ 9A9? ≤ ρ(A) + . Then ρ(A) k = ρ(A k ) ≤ 9A9? ≤ (ρ(A) + ) k For the given norm 9 · 9, there exists a constant C such that C −1 9 B9? ≤ 9B9 ≤ C 9 B9? Hence ρ(A) k = ρ(A k ) ≤ 9A k9 ≤ C(ρ(A) + ) k ρ(A) ≤ 9A k9 1/k ≤ C 1/k(ρ(A) + ) Then there exists k0 such that when k > k0, 1 ≤ C 1/k ≤ 1 + and 0 ≤ 9A k 9 1/k −ρ(A) ≤ (ρ(A) + 2) We finish the proof. Theorem 9. For A ∈ Mn, P∞ k=1 akAk converges if P∞ k=1 |ak| 9 A9 k for some matrix norm 9 · 9. Example 3. (1) e A = I + P∞ k=1 A k k! converges for all A ∈ Mn (2) (I − A) −1 = I + P∞ k=1 Ak converges if and only if ρ(A) P j6=i |aij |, then A is invertible. Proof. We can show that in this case 9I − D−1A9∞ < 1 where D is the diagonal of A. Hence D−1A and A are invertible.
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 04.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 03.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 02.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 01.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 00.pdf
- 《线性代数》课程教学资源(书籍文献)线性椭圆型方程 Linear Elliptic Equations.pdf
- 《数理统计》课程PPT教学课件(讲稿)第一章 统计推断准备.ppt
- 《数理统计》课程PPT教学课件(讲稿)常见的连续性随机变量的分布.ppt
- 《数理统计》课程PPT教学课件(讲稿)离散随机变量及分布律.ppt
- 《概率论与数理统计》课程教学资源(教案讲义)Chapter 2 Conditional Probability.pdf
- 《概率论与数理统计》课程教学资源(教案讲义)Chapter 1 Random Events and Probability.pdf
- 《概率论与数理统计》课程教学资源(教案讲义)概率论与数理统计教学大纲.pdf
- 《实分析与傅里叶分析》课程教学资源(讲义)实分析与傅里叶分析(英文版)Introduction to Real Analysis and Fourier Analysis,RA.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(2/4)第二册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(4/4)第四册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(3/4)第三册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(1/4)第一册.pdf
- 微积分发展史(讲义)微积分思想的产生与发展历史.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第八章 假设检验 8.2 单个正态总体的参数检验.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第八章 假设检验 8.1 假设检验的基本概念.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 06.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 07.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 08.pdf
- 概率论与数理统计课程教学大纲 Probability and statistics.pdf
- 延安大学:《概率论与数理统计》课程授课教案(打印版)概率论与数理统计 Probability Theory and Mathematical Statistics(任课教师:吕佳).pdf
- 西北师范大学:数学与统计学院数学与应用数学专业学院平台学科必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业专业平台必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业专业平台任选课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院信息与计算科学专业专业平台必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院信息与计算科学专业专业平台任选课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业云亭班专业平台必修课程教学大纲汇编.pdf
- 北京信息科技大学:理学院各专业课程教学大纲汇编.pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅰ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅱ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅲ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅳ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《高等代数Ⅰ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《高等代数Ⅱ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《解析几何》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《常微分方程》课程教学大纲(2012).pdf