上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 08

MATRIX THEORY CHAPTER 8 FALL 2017 1.NONNEGATIVE MATRIX A Z 0. Definition 1.Let A=Mm B=Mm:We write ·B≥0 if all bi≥0 A>BUA-B-0. We also write Al -[. Theorem 1(Estimates of p(A)).Let A,BEM. 8是 ()(B) (d)fA≥0 and A is any principle submatrir of A.Then p(A≤p(A).n particular max≤isnf{ar}≤ p(A)in this case. Theorem 2.Let AEM and suppose A.Then (a) 盟∑lal≤≤器∑al 1 =1 If the row sums of A are constant,then p(A)=Allloc. 6 哭lal≤≤,器∑al If the column sums of A are constant,then p(A)=Al. Theorem3.LetA∈M,A≥0amdx∈C",x>0.Them 1 院名器 and 票上兴≤≤器上岩 far≤Ar≤Bz,this implies o≤p(A)≤B.In particular if Ax=缸,then p(A)=入. 2.POSITIVE MATRIX A>0. Theorem 4 (Perron).Let AE Mn and A>0.Then cally simple)eigenvalue of A; 骨AA四Zsm,heL,A=pA5Ay=A)y amd红>0,y>0
MATRIX THEORY - CHAPTER 8 FALL 2017 1. Nonnegative Matrix A ≥ 0. Definition 1. Let A = [aij ] ∈ Mn,m, B = [bij ] ∈ Mn,m. We write • B ≥ 0 if all bij ≥ 0; • B > 0 if all bij > 0; • A ≥ B if A − B ≥ 0; • A > B if A − B > 0. We also write |A| = [|aij |]. Theorem 1 (Estimates of ρ(A)). Let A, B ∈ Mn. (a) If |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B). (b) If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B). (c) If A ≥ 0 and A˜ is any principle submatrix of A. Then ρ(A˜) ≤ ρ(A). In particular max1≤i≤n{aii} ≤ ρ(A) in this case. Theorem 2. Let A ∈ Mn and suppose A ≥ 0. Then (a) min 1≤i≤n Xn j=1 |aij | ≤ ρ(A) ≤ max 1≤i≤n Xn j=1 |aij |. If the row sums of A are constant, then ρ(A) = 9A9∞. (b) min 1≤j≤n Xn i=1 |aij | ≤ ρ(A) ≤ max 1≤j≤n Xn i=1 |aij |. If the column sums of A are constant, then ρ(A) = 9A91. Theorem 3. Let A ∈ Mn, A ≥ 0 and x ∈ C n, x > 0. Then min 1≤i≤n 1 xi Xn j=1 aijxj ≤ ρ(A) ≤ max 1≤i≤n 1 xi Xn j=1 aijxj . and min 1≤j≤n xj Xn i=1 aij xi ≤ ρ(A) ≤ max 1≤j≤n xj Xn i=1 aij xi . If αx ≤ Ax ≤ βx, this implies α ≤ ρ(A) ≤ β. In particular if Ax = λx, then ρ(A) = λ. 2. Positive Matrix A > 0. Theorem 4 (Perron). Let A ∈ Mn and A > 0. Then (a) ρ(A) > 0; (b) ρ(A) is an eigenvalue of A; (c) There is a positive vector x such that Ax = ρ(A)x; (d) ρ(A) is an algebraically simple (and hence geometrically simple) eigenvalue of A; (e) If λ is an eigenvalue and λ 6= ρ(A), then |λ| 0, y > 0. 1

2 FALL 2017 Example 1. -[店卧[ Then p(A)=8 since row sums are constant 8.There erists a positive vector r 点wr-6斋[美著
2 FALL 2017 Example 1. A = 5 1 2 4 2 2 3 2 3 , AT = 5 4 3 1 2 2 2 2 3 , Then ρ(A) = 8 since row sums are constant 8. There exists a positive vector x = 1 1 1 such that Ax = 8x. There exist another positive vector y = 11 8 9 14 1 such that AT y = 8y. So lim m→∞ [ρ(A) −1A] m = L = 56 169 11 8 9 14 1 11 8 9 14 1 11 8 9 14 1
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 07.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 06.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 05.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 04.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 03.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 02.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 01.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 00.pdf
- 《线性代数》课程教学资源(书籍文献)线性椭圆型方程 Linear Elliptic Equations.pdf
- 《数理统计》课程PPT教学课件(讲稿)第一章 统计推断准备.ppt
- 《数理统计》课程PPT教学课件(讲稿)常见的连续性随机变量的分布.ppt
- 《数理统计》课程PPT教学课件(讲稿)离散随机变量及分布律.ppt
- 《概率论与数理统计》课程教学资源(教案讲义)Chapter 2 Conditional Probability.pdf
- 《概率论与数理统计》课程教学资源(教案讲义)Chapter 1 Random Events and Probability.pdf
- 《概率论与数理统计》课程教学资源(教案讲义)概率论与数理统计教学大纲.pdf
- 《实分析与傅里叶分析》课程教学资源(讲义)实分析与傅里叶分析(英文版)Introduction to Real Analysis and Fourier Analysis,RA.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(2/4)第二册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(4/4)第四册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(3/4)第三册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(1/4)第一册.pdf
- 概率论与数理统计课程教学大纲 Probability and statistics.pdf
- 延安大学:《概率论与数理统计》课程授课教案(打印版)概率论与数理统计 Probability Theory and Mathematical Statistics(任课教师:吕佳).pdf
- 西北师范大学:数学与统计学院数学与应用数学专业学院平台学科必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业专业平台必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业专业平台任选课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院信息与计算科学专业专业平台必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院信息与计算科学专业专业平台任选课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业云亭班专业平台必修课程教学大纲汇编.pdf
- 北京信息科技大学:理学院各专业课程教学大纲汇编.pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅰ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅱ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅲ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅳ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《高等代数Ⅰ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《高等代数Ⅱ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《解析几何》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《常微分方程》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《抽象代数》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《复变函数论》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《实变函数论》课程教学大纲(2012).pdf