上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 06

MATRIX THEORY CHAPTER 6 FALL 2017 1.GERSGORIN DISK THEOREM Theorem 1 (Geirsgorin).Let A=[alE Mn and let R,=∑lal,1≤i≤n. ji Then (1)all the eigenvalues of A are located in the union of the n-discs UzeC:-al≤R}=G(A) (2)if a union of k dises forms a comnected region that is disjoint from all the remaining n-k discs. then there are eract k eigenvalues of A in this region. Corollary 1.Let A=M and let C=∑lal1≤j≤n 南 Then (1)all the eigenvalues of A are located in the union of the n-discs U[zeC:2-al≤C}=G(AT方 j=1 (2)if a union of k discs forms a connected region that is disjoint from all the remaining n-k discs, then there are eract k eigenvalues of A in this region. Corollary 2.If A=[]Mn,then p(4≤min{max∑lal.max∑al}=min{lAle,lA} 1■1 Corollary 3.Let A=a]Mn and let D=diag(pi,pa.....),where p,pa.pn are positive real numbers.Then all the eigenvalues of A lie in the region tec:-s-(o-tAD) as well as in the region U(EC:k-apls>plaull -G(D-ATD). 卫街 Example 1.Let 21-4
MATRIX THEORY - CHAPTER 6 FALL 2017 1. Gersgorin Disk Theorem Theorem 1 (Geirsgorin). Let A = [aij ] ∈ Mn and let Ri = X j6=i |aij |, 1 ≤ i ≤ n. Then (1) all the eigenvalues of A are located in the union of the n-discs [n i=1 {z ∈ C : |z − aii| ≤ Ri} = G(A); (2) if a union of k discs forms a connected region that is disjoint from all the remaining n − k discs, then there are exact k eigenvalues of A in this region. Corollary 1. Let A = [aij ] ∈ Mn and let Cj = X i6=j |aij |, 1 ≤ j ≤ n. Then (1) all the eigenvalues of A are located in the union of the n-discs [n j=1 {z ∈ C : |z − ajj | ≤ Cj} = G(A T ); (2) if a union of k discs forms a connected region that is disjoint from all the remaining n − k discs, then there are exact k eigenvalues of A in this region. Corollary 2. If A = [aij ] ∈ Mn, then ρ(A) ≤ min{max i Xn j=1 |aij |, max j Xn i=1 |aij |} = min{9A9∞,9A91} Corollary 3. Let A = [aij ] ∈ Mn and let D = diag{p1, p2, ..., pn}, where p1, p2, · · · pn are positive real numbers.Then all the eigenvalues of A lie in the region [n i=1 {z ∈ C : |z − aii| ≤ 1 pi X j6=i pj |aij |} = G(D−1AD) as well as in the region [n j=1 {z ∈ C : |z − ajj | ≤ 1 pj X i6=j pi |aij |} = G(D−1A T D). Example 1. Let A = 2 0 1 1 3 1 2 1 −4 Corollary 4. Let A be a real square matrix. Comsider one connected component of G(A) (or G(AT )), which is a union of k-disks. If k is odd, then in this component there is at least one real eigenvalue. 1

2 FALL 2017 GA) GIAT) FIGURE 1.G(A)and G(AT) Corollary 5.Let A be a Hermitian matrir.Then the eigenvalues are in the intervals obtained by intersection 时G(4)(or G(AT) 2.DIAGONALLY DOMINANT Definition 1.Let A=Mn.The matrir A is said to be diagonally dominantif al≥∑ali=1,2…,n It is said to be strictly diagonally dominant if laidl laigl,vi=1.2.....n. Theorem 2.Let A=aMn be strictly diagonally dominant.Then (a)A is invertible. (b)If all main dingonal entries of A are positive,then all the cigenvalues of A have positive real part. (c)If A is Hermitian and all main diagonal entries of A are positive,then all the eigenvalues of A are
2 FALL 2017 Figure 1. G(A) and G(AT ) Corollary 5. Let A be a Hermitian matrix. Then the eigenvalues are in the intervals obtained by intersection of G(A) (or G(AT )). 2. Diagonally Dominant Definition 1. Let A = [aij ] ∈ Mn. The matrix A is said to be diagonally dominant if |aii| ≥ X j6=i |aij |, ∀ i = 1, 2, ..., n. It is said to be strictly diagonally dominant if |aii| > X j6=i |aij |, ∀ i = 1, 2, ..., n. Theorem 2. Let A = [aij ] ∈ Mn be strictly diagonally dominant. Then (a) A is invertible. (b) If all main diagonal entries of A are positive, then all the eigenvalues of A have positive real part. (c) If A is Hermitian and all main diagonal entries of A are positive, then all the eigenvalues of A are real and positive

MATRIX THEORY CHAPTER 6 3.PERTURBATION THEOREM Theorem 3.Let B,E Mn and A=B+E.Assume that B is normal.Let ((A)....n(A)}be the eigenvalues of A in some given order and let ((B),(B)}be the eigenvalues of B in some order.Then for any i(A),there erists some j(B)such that A(A)-入y(B引≤IEIl2 Theorem 4 (Hoffman-Wielandt).Let B,EE Mn and A=B+E.Assume that A and B are both eso时A in some give Then ∑Ao(4-A(BP≤E3=∑leP
MATRIX THEORY - CHAPTER 6 3 3. Perturbation Theorem Theorem 3. Let B, E ∈ Mn and A = B + E. Assume that B is normal. Let {λ1(A), ..., λn(A)} be the eigenvalues of A in some given order and let {λ1(B), ..., λn(B)} be the eigenvalues of B in some order. Then for any λi(A), there exists some λj (B) such that |λi(A) − λj (B)| ≤ 9E 92 . Theorem 4 (Hoffman-Wielandt). Let B, E ∈ Mn and A = B + E. Assume that A and B are both normal. Let {λ1(A), ..., λn(A)} be the eigenvalues of A in some given order and let {λ1(B), ..., λn(B)} be the eigenvalues of B in some order. Then there exists a permutation σ(i) of the integers 1, 2, ..., n such that Xn i=1 |λσ(i)(A) − λi(B)| 2 ≤ kEk 2 2 = X i,j |eij | 2
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 05.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 04.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 03.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 02.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 01.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 00.pdf
- 《线性代数》课程教学资源(书籍文献)线性椭圆型方程 Linear Elliptic Equations.pdf
- 《数理统计》课程PPT教学课件(讲稿)第一章 统计推断准备.ppt
- 《数理统计》课程PPT教学课件(讲稿)常见的连续性随机变量的分布.ppt
- 《数理统计》课程PPT教学课件(讲稿)离散随机变量及分布律.ppt
- 《概率论与数理统计》课程教学资源(教案讲义)Chapter 2 Conditional Probability.pdf
- 《概率论与数理统计》课程教学资源(教案讲义)Chapter 1 Random Events and Probability.pdf
- 《概率论与数理统计》课程教学资源(教案讲义)概率论与数理统计教学大纲.pdf
- 《实分析与傅里叶分析》课程教学资源(讲义)实分析与傅里叶分析(英文版)Introduction to Real Analysis and Fourier Analysis,RA.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(2/4)第二册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(4/4)第四册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(3/4)第三册.pdf
- 《高等数学》课程教学资源(书籍文献)高等数学参考书籍《古今数学思想》电子版(1/4)第一册.pdf
- 微积分发展史(讲义)微积分思想的产生与发展历史.pdf
- 上海交通大学:《概率论与数理统计》课程教学资源(课件讲义)第八章 假设检验 8.2 单个正态总体的参数检验.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 07.pdf
- 上海交通大学:《矩阵论》课程教学资源(讲义)CHAPTER 08.pdf
- 概率论与数理统计课程教学大纲 Probability and statistics.pdf
- 延安大学:《概率论与数理统计》课程授课教案(打印版)概率论与数理统计 Probability Theory and Mathematical Statistics(任课教师:吕佳).pdf
- 西北师范大学:数学与统计学院数学与应用数学专业学院平台学科必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业专业平台必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业专业平台任选课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院信息与计算科学专业专业平台必修课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院信息与计算科学专业专业平台任选课程教学大纲汇编.pdf
- 西北师范大学:数学与统计学院数学与应用数学专业云亭班专业平台必修课程教学大纲汇编.pdf
- 北京信息科技大学:理学院各专业课程教学大纲汇编.pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅰ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅱ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅲ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《数学分析Ⅳ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《高等代数Ⅰ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《高等代数Ⅱ》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《解析几何》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《常微分方程》课程教学大纲(2012).pdf
- 新乡学院:数学与统计学院数学与应用数学专业《抽象代数》课程教学大纲(2012).pdf