《机器学习》教学资源(PPT讲稿)支持向量机 support vector machines
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/a9dc427102.jpg@w_250)
Support Vector Machines Note to other teachers and users of Andrew w moore these slides. Andrew would be delighted if you found this source material useful in Professor giving your own lectures. Feel free to use ms p t moity them School of Computer Science of a significant portion of these sides in Carnegie Mellon University your own lecture please include this message, or the following link to the www.cs.cmu.edu/awn source repository of Andrews tutorials http://www.cs.cmu.edu/wawm/tutorials 向@ Cs. cmu. edu omments and corrections gratefully 412-268-7599 Slides modified for Comp537, Spring, 2006, HKUst Copyright C 2001, 2003, Andrew W. Moore Nov 23rd, 2001
Copyright © 2001, 2003, Andrew W. Moore Nov 23rd, 2001 Support Vector Machines Andrew W. Moore Professor School of Computer Science Carnegie Mellon University www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599 Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received. Slides Modified for Comp537, Spring, 2006, HKUST
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/a34df4a2cb.jpg@w_250)
History SVM is a classifier derived from statistical learning theory by vapnik and Chervonenkis SVMs introduced by Boser, guyon anik in COLT-92 Initially popularized in the nips community, now an important and active field of all Machine learning research Special issues of Machine Learning Journal, and Journal of Machine Learning Research Copyright 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 2
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 2 History • SVM is a classifier derived from statistical learning theory by Vapnik and Chervonenkis • SVMs introduced by Boser, Guyon, Vapnik in COLT-92 • Initially popularized in the NIPS community, now an important and active field of all Machine Learning research. • Special issues of Machine Learning Journal, and Journal of Machine Learning Research
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/f5a845d23f.jpg@w_250)
Roadmap Hard-Margin linear classifier Maximize Margin · Support vector Quadratic Programming Soft-Margin linear classifier Maximize Margin Support vector Quadratic Programming Non-Linear separable problem ●XOR Transform to Non-Linear by kernels Reference Copyright 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 3
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 3 Roadmap • Hard-Margin Linear Classifier • Maximize Margin • Support Vector • Quadratic Programming • Soft-Margin Linear Classifier • Maximize Margin • Support Vector • Quadratic Programming • Non-Linear Separable Problem • XOR • Transform to Non-Linear by Kernels • Reference
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/2b938fb95f.jpg@w_250)
Linear classifiers X f est f( w, b=sign ( w x-b denotes +1 denotes -1 How would you classify this data? Copyright 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 4
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 4 Linear Classifiers f x a y est denotes +1 denotes -1 f(x,w,b) = sign(w. x - b) How would you classify this data?
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/0789cb622d.jpg@w_250)
Linear classifiers X f est fx w, b)=sign (w, x-b denotes +1 denotes -1 How would you classify this data? Copyright 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 5
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 5 Linear Classifiers f x a y est denotes +1 denotes -1 f(x,w,b) = sign(w. x - b) How would you classify this data?
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/8a2d0b1ce0.jpg@w_250)
Linear classifiers X f est f( w, b= sign (w x-b denotes +1 denotes -1 How would you classify this data? Copyright 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 6
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 6 Linear Classifiers f x a y est denotes +1 denotes -1 f(x,w,b) = sign(w. x - b) How would you classify this data?
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/875c24ade0.jpg@w_250)
Linear classifiers X f est f( w, b=sign ( w x-b denotes +1 denotes -1 How would you classify this data? Copyright 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 7
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 7 Linear Classifiers f x a y est denotes +1 denotes -1 f(x,w,b) = sign(w. x - b) How would you classify this data?
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/987e79e50c.jpg@w_250)
Linear classifiers X f est f y, b)=sign(w, X-b denotes +1 denotes -1 Any of these would be fine but which is best? Copyright 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 8
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 8 Linear Classifiers f x a y est denotes +1 denotes -1 f(x,w,b) = sign(w. x - b) Any of these would be fine.. ..but which is best?
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/6a5d1e1318.jpg@w_250)
Classifier Margin f est f( w, b=sign ( w x-b denotes +1 denotes -1 Define the margin of a linear classifier as the Width that the boundary could be increased by before hitting datapoint Copyright o 2001, 2003, Andrew W.Modre Support Vector Machines: Slide 9
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 9 Classifier Margin f x a y est denotes +1 denotes -1 f(x,w,b) = sign(w. x - b) Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint
![](https://docfiles.xiaokudang.com/upload/docimgs/21/02/03/0942/df25354f51.jpg@w_250)
Maximum Margin f est f( w, b=sign w x-b) denotes +1 denotes -1 The maximum margin linear classifier is the linear classifier With the, um maximum margin This is the simplest kind of SVM(Called an SVM Linear sⅥM Copyright 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 10
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 10 Maximum Margin f x a y est denotes +1 denotes -1 f(x,w,b) = sign(w. x - b) The maximum margin linear classifier is the linear classifier with the, um, maximum margin. This is the simplest kind of SVM (Called an LSVM) Linear SVM
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 哈尔滨工业大学:逻辑斯蒂回归与最大熵(PPT课件讲稿).pptx
- 软件开发环境与工具(PPT讲稿)Software development environment and tool.ppt
- 语义网与本体(PPT讲稿)Semantic Web & Ontology(元数据 Metadata).ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第五章 数组.ppt
- 香港科技大学:片上网络(PPT讲稿)network-on-chip(NoC)NoC Building Blocks.pptx
- 南京大学:《自然语言处理 Natural Language Processing(NLP)》课程教学资源(PPT课件讲稿)自然语言处理概述、基于规则(知识工程)的传统自然语言处理方法(理性方法).ppt
- 西安电子科技大学:《操作系统 Operating Systems》课程教学资源(PPT课件讲稿)Chapter 06 文件系统 File Systems(主讲:高海昌).ppt
- 香港大学:Data Analysis - Factors Potentially Affecting Development.pptx
- 北京大学:《高级编译技术 Advanced Compiler Techniques》课程教学资源(PPT课件讲稿)Introduction to Optimizations.ppt
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第四章 语法分析(戴新宇).pptx
- 《计算机组装与维修》课程教学资源(PPT课件讲稿)第十三章 局域网维护及常见故障处理.ppt
- 北京大学:《软件需求工程》课程教学资源(PPT课件讲稿)第十章 软件需求开发与管理工具.ppt
- 中国科学技术大学:《网络信息安全 NETWORK SECURITY》课程教学资源(PPT课件讲稿)第二章 数据加密技术基础.ppt
- 《汇编语言》课程教学资源(PPT课件讲稿)第6章 子程序.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)MSI、MESI、分布式共享存储器体系结构、Models of Memory Consistency.pptx
- 《数据库系统概论》课程教学资源(PPT课件讲稿)第六章 数据库设计.ppt
- 电子科技大学:《汇编语言程序设计》课程教学资源(PPT课件)第一章 基础知识(主讲:詹瑾瑜).ppt
- 进程(PPT课件讲稿)Processes.pptx
- 《大学计算机基础》课程教学资源(PPT课件讲稿)第四章 Excel 2007电子表格.ppt
- 东南大学:《C++语言程序设计》课程教学资源(PPT课件讲稿)Chapter 11 Operator Overloading; String and Array Objects(主讲:东方).ppt
- 中国科学技术大学:《计算机视觉》课程教学资源(PPT课件讲稿)第二章 视觉的基本知识.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第二章 词法分析.ppt
- 《计算机网络》课程教学资源(PPT课件)第4讲 以太网组网及故障排除.ppt
- VB.Net程序设计基础(PPT课件讲稿).ppt
- 《计算机导论》课程教学资源(PPT课件讲稿)第9章 计算机学科方法论.ppt
- 厦门大学:《大数据技术原理与应用》课程教学资源(PPT课件讲稿,2017)第11章 图计算.ppt
- 《Visual Basic 6.0程序设计》课程教学资源(PPT课件)第四章 常用控件与窗体.ppt
- 大连工业大学:《计算机程序设计(C语言版)》课程教学资源(PPT课件讲稿,共十三章).pps
- 《高级语言程序设计》课程教学资源(试卷习题)试题五(无答案).doc
- 《计算机文化基础》课程教学大纲 Computer Culture Foundation.pdf
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 08 Stereo vision.pptx
- 《计算机网络 Computer Networking》课程教学资源(PPT课件讲稿,英文版)Chapter 6 Wireless and Mobile Networks.ppt
- Gas Systems Modeling andSimulation with MSC.EASY5:GD Advanced Class Notes(EAS105 Course Notes).ppt
- 哈尔滨工业大学:《语言信息处理》课程教学资源(PPT课件讲稿)机器翻译 II Machine Translation II.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 3 Process Description and Control 3.1 What is a Process 3.2 Process States 3.3 Process Description.ppt
- 《计算机应用基础》课程教学资源(PPT课件讲稿)第四章 电子表格软件(Excel 2003).ppt
- 《计算机文化基础》课程教学资源(PPT课件讲稿)第七章 计算机网络基础.ppt
- 大数据集成(PPT讲稿)Big Data Integration.pptx
- 中国科学技术大学:《嵌入式操作系统 Embedded Operating Systems》课程教学资源(PPT课件讲稿)第四讲 CPU调度(part II).ppt
- 西安电子科技大学:《计算机通信网》课程教学资源(PPT课件讲稿)第1章 概述(宋锐).ppt