《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 08 Stereo vision

Image processing and computer VISIon Chapter 8: Stereo vision Stereo vO. a
Image processing and computer vision Chapter 8: Stereo vision Stereo v0.a 1

3-D computer vision, an overview Find 3-d structure using 2-D images One camera: Possible but limited results, e.g. by identify vanishing lines Two cameras: Stereo: use Epipolar geometry( this chapter) Three cameras Trifocal tensor method (very advanced not discussed here cameras Factorization(Chapter 9), fast method, moderate accuracy Bundle adjustment chapter 11), slow but accurate Stereo vO. a
3-D computer vision, an overview • Find 3-D structure using 2-D images • One camera: – Possible but limited results, e.g. by identify vanishing lines • Two cameras: – Stereo: use Epipolar geometry (This chapter) • Three cameras: – Trifocal tensor method (very advanced not discussed here) • N cameras: – Factorization (Chapter 9), fast method, moderate accuracy – Bundle adjustment (chapter 11), slow but accurate. Stereo v0.a 2

Intro Essential Mat. I Fundamental Mat. I Epipolar Geom. I Corresp. I Reconst In this chapter you will learn Stereo camera setup Essential matrix (E)for describing the geometry between two cameras of known intrinsic parameters Fundamental matrix (f) for describing the geometry between two cameras of unknown intrinsic parameters Epipolar geometry parameters and characteristics The correspondent problem 3D Reconstruction using stereo vision Stereo vO. a
Intro. | Essential Mat. | Fundamental Mat. | Epipolar Geom. | Corresp. | Reconst. In this chapter you will learn • Stereo camera setup • Essential matrix (E)for describing the geometry between two cameras of known intrinsic parameters • Fundamental matrix (F) for describing the geometry between two cameras of unknown intrinsic parameters • Epipolar geometry: parameters and characteristics • The Correspondent problem • 3D Reconstruction using stereo vision Stereo v0.a 3

Intro. Essential Mat. Fundamental Mat. Epipolar Geom. Corresp. Reconst Part 1: A simple approach 3-D reconstruction from stereo mages Assumption: the cameras are paralle/ (2 principal axes are parallel) and the camera shift is only in the horizontal direction Stereo vO. a
Intro. | Essential Mat. | Fundamental Mat. | Epipolar Geom. | Corresp. | Reconst. Part 1: A simple approach 3-D reconstruction from stereo images Assumption : the cameras are parallel (2 principal axes are parallel) and the camera shift is only in the horizontal direction Stereo v0.a 4

Intro Essential Mat. I Fundamental Mat. I Epipolar Geom. I Corresp. I Reconst Introduction to stereo vision Objectives: Basic idea of stereo vision Stereo reconstruction by epipolar geometry Stereo camera pair calibration find Fundamental matriX F) Construct the 3d ( graphic) model from 2 images Inside a computer e.g. Graphic 3-Dobⅰect model in a game Stereo vO. a
Intro. | Essential Mat. | Fundamental Mat. | Epipolar Geom. | Corresp. | Reconst. Introduction to Stereo Vision • Objectives: – Basic idea of stereo vision – Stereo reconstruction by epipolar geometry • Stereo camera pair calibration (find Fundamental matrix F) • Construct the 3D (graphic) model from 2 images Stereo v0.a 5 e.g. Graphic model in a game Inside a computer 3-D object

Intro Essential Mat. I Fundamental Mat. I Epipolar Geom. I Corresp. I Reconst a simple stereo system Assume cameras are aligned horizontally left Right Object CameraCamera Px(x,y, z) (No vertical disparity) Apoint in 3D(Px) Principle Principle axiS axIs eft image Right image plane plane Left Right Image : XL Image plane plane Focal Left Length Stereo: d Rig optical Baseline(B)optical Center Center B Baseline) O(left o(rig Left camera center (reference point) Horizontal (reference Disparity=XL-XR point) Stereo vO. a
Intro. | Essential Mat. | Fundamental Mat. | Epipolar Geom. | Corresp. | Reconst. A simple stereo system Assume cameras are aligned horizontally (No vertical disparity) • Stereo v0.a 6 A point in 3D (Px) Right image plane Left image plane Left optical Center O(left) (reference point) Right optical Center O(right) Stereo: Baseline (B) xL xR Focal Length f Object Px(x,y,z) z Left camera center (reference point) Horizontal Disparity=xL -xR B (Baseline) Left Camera Principle axis Right Camera Principle axis Left Image plane Right Image plane

Intro. Essential Mat. I Fundamental Mat. Epipolar Geom. I Corresp. I Reconst Example assume cameras are aligned horizontallyno vertical motion of camera= no vertical disparity Left image Right image White crosses are overlaid on images to show the positions of features They are not 换| in the original pictures a corner feature is found in a 10x10 window(w) Find the correspondence at (XR yR) centered at the Horizontal disparity=XL-XR left image(XL,yu (overlay a cross) Thestereosequencevideohttp://www.youtube.com/watch?veursyjokuils Stereo vO. a
Intro. | Essential Mat. | Fundamental Mat. | Epipolar Geom. | Corresp. | Reconst. Example Assume cameras are aligned horizontally(No vertical motion of camera= no vertical disparity) • Stereo v0.a 7 Left image Right image Find the correspondence at (xR,yR) Horizontal disparity=XL -XR A corner feature is found in a 10x10 window (w) centered at the left image (xL ,yL ) (overlay a cross) White crosses are overlaid on images to show the positions of features. They are not in the original pictures. The stereo sequence video : http://www.youtube.com/watch?v=Ursyjokuils

Intro Essential Mat. I Fundamental Mat. I Epipolar Geom. I Corresp. I Reconst Triangular calculation Left Right bject Camera Camera Px(x,y, z) Principle Principle By similar triangle axIs axIs w.r.t left camera lens center z (x-b Left Right Image X Image lane plane elimate x→ f·b Focal Leng th b baseline) Left camera center By similar triangle, (reference point) Horizontal w.r.t right camera lens center Disparity=X -XE Stereo vO. a One major problem is to locate x' and x' r the correspondence problem
Intro. | Essential Mat. | Fundamental Mat. | Epipolar Geom. | Corresp. | Reconst. • , ( ) elimate ( ' l ' r ' ' l r x x = z f x - b x = z f f b x z = x - x ) • Stereo v0.a 8 x’l x’r Focal Length f Object Px(x,y,z) z Left camera center (reference point) Horizontal Disparity=xL -xR b (Baseline) Left Camera Principle axis Right Camera Principle axis Left Image plane Right Image plane By similar triangle, w.r.t left camera lens center By similar triangle, w.r.t right camera lens center Triangular calculation One major problem is to locate x’l and x’r The correspondence problem x

Intro. Essential Mat. I Fundamental Mat. I Epipolar Geom.| Corresp.|Reconst Stereo vision example step1: feature extraction(e.g. harris operator for the left and right image find features and locate their windows c:\Otest-imagestabe 7\ labe7-000 bmp c:0MisionlOtest-imagesllabe 7 abe7-007 bmp 50 100 200 250 250 300 50 400 400 50 200 300 400 500 Left image right image Features are shown by overlaid markers on images Stereo vO. a
Intro. | Essential Mat. | Fundamental Mat. | Epipolar Geom. | Corresp. | Reconst. Stereo vision example: step1:feature extraction (e.g. Harris operator) : for the left and right image find features and locate their windows • Stereo v0.a 9 Left image right image Features are shown by overlaid markers on images

Intro. Essential Mat. I Fundamental Mat. I Epipolar Geom. I Corresp. I Reconst Stereo vision example: step2 Correspondence problem example Find correspondence of f1 in the right image and determine which is the match (see chapter 4, features extraction and tracking csicnDtest-m 0e71abe7.000bmp clDMsionest mag Left image Right image fl: a small window f2 13 CL2=Cross correlate 13 Cross correlate f i with f2 f with f 3 Stereo vO. a
Intro. | Essential Mat. | Fundamental Mat. | Epipolar Geom. | Corresp. | Reconst. Stereo vision example: step2: Correspondence problem example: Find correspondence of f1 in the right image and determine which is the match (see chapter 4, features extraction and tracking) • Stereo v0.a 10 r1,2=Cross correlate f1 with f2 f1:a small window f2 f3 r1,3=Cross correlate f1 with f3 Left image Right image
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机文化基础》课程教学大纲 Computer Culture Foundation.pdf
- 《高级语言程序设计》课程教学资源(试卷习题)试题五(无答案).doc
- 大连工业大学:《计算机程序设计(C语言版)》课程教学资源(PPT课件讲稿,共十三章).pps
- 《Visual Basic 6.0程序设计》课程教学资源(PPT课件)第四章 常用控件与窗体.ppt
- 厦门大学:《大数据技术原理与应用》课程教学资源(PPT课件讲稿,2017)第11章 图计算.ppt
- 《计算机导论》课程教学资源(PPT课件讲稿)第9章 计算机学科方法论.ppt
- VB.Net程序设计基础(PPT课件讲稿).ppt
- 《计算机网络》课程教学资源(PPT课件)第4讲 以太网组网及故障排除.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第二章 词法分析.ppt
- 中国科学技术大学:《计算机视觉》课程教学资源(PPT课件讲稿)第二章 视觉的基本知识.ppt
- 《机器学习》教学资源(PPT讲稿)支持向量机 support vector machines.ppt
- 哈尔滨工业大学:逻辑斯蒂回归与最大熵(PPT课件讲稿).pptx
- 软件开发环境与工具(PPT讲稿)Software development environment and tool.ppt
- 语义网与本体(PPT讲稿)Semantic Web & Ontology(元数据 Metadata).ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第五章 数组.ppt
- 香港科技大学:片上网络(PPT讲稿)network-on-chip(NoC)NoC Building Blocks.pptx
- 南京大学:《自然语言处理 Natural Language Processing(NLP)》课程教学资源(PPT课件讲稿)自然语言处理概述、基于规则(知识工程)的传统自然语言处理方法(理性方法).ppt
- 西安电子科技大学:《操作系统 Operating Systems》课程教学资源(PPT课件讲稿)Chapter 06 文件系统 File Systems(主讲:高海昌).ppt
- 香港大学:Data Analysis - Factors Potentially Affecting Development.pptx
- 北京大学:《高级编译技术 Advanced Compiler Techniques》课程教学资源(PPT课件讲稿)Introduction to Optimizations.ppt
- 《计算机网络 Computer Networking》课程教学资源(PPT课件讲稿,英文版)Chapter 6 Wireless and Mobile Networks.ppt
- Gas Systems Modeling andSimulation with MSC.EASY5:GD Advanced Class Notes(EAS105 Course Notes).ppt
- 哈尔滨工业大学:《语言信息处理》课程教学资源(PPT课件讲稿)机器翻译 II Machine Translation II.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 3 Process Description and Control 3.1 What is a Process 3.2 Process States 3.3 Process Description.ppt
- 《计算机应用基础》课程教学资源(PPT课件讲稿)第四章 电子表格软件(Excel 2003).ppt
- 《计算机文化基础》课程教学资源(PPT课件讲稿)第七章 计算机网络基础.ppt
- 大数据集成(PPT讲稿)Big Data Integration.pptx
- 中国科学技术大学:《嵌入式操作系统 Embedded Operating Systems》课程教学资源(PPT课件讲稿)第四讲 CPU调度(part II).ppt
- 西安电子科技大学:《计算机通信网》课程教学资源(PPT课件讲稿)第1章 概述(宋锐).ppt
- 西安交通大学:《网络与信息安全》课程PPT教学课件(网络入侵与防范)第六章 网络入侵与防范——拒绝服务攻击与防御技术.ppt
- 《高级人工智能 Advanced Artificial Intelligence》教学资源(PPT讲稿)Lecture 7 Recurrent Neural Network.pptx
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第七章 运行时刻环境.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第6章 Data-Level Parallelism in Vector, SIMD, and GPU Architectures.ppt
- 河南中医药大学(河南中医学院):《计算机网络》课程教学资源(PPT课件讲稿)第六章 应用层.pptx
- 媒体服务(PPT课件讲稿)Media Services.ppt
- 东北大学:《可信计算基础》课程教学资源(PPT课件讲稿)第6章 TPM核心功能(主讲:周福才).pptx
- 山东大学:《人机交互技术》课程教学资源(PPT课件讲稿)第3章 交互设备 3.5 显示设备 3.6 语音交互设备 3.7虚拟现实系统中的交互设备.ppt
- 《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 11 Probabilistic Information Retrieval.ppt
- 广西医科大学:《计算机网络 Computer Networking》课程教学资源(PPT课件讲稿)Chapter 01 Introduction overview.pptx
- 东南大学:《C++语言程序设计》课程教学资源(PPT课件讲稿)Chapter 10 Classes A Deeper Look(Part 2).ppt